제 114회 필기시험 문제풀이

소방기술사

강사: 황모아, 문기현, 김정진, 유흥석, 이중희

소방전기교육전문학원

(주) **모아소방학원** MOA Technical Education 대표 (02) 2068-2851 FAX. 02) 2068-2881

www.moate.co.kr

≫모아는 VISION이다≪

"소방기술사 대한민국 1위!"

제 114회 소방기술사 문제풀이

강사: 황모아, 문기현, 김정진, 유흥석, 이중희

모아소방 & 에듀파이어학원 2012~2018년

매년마다 현 수강생의 평균 1/5 을 합격시킨 합격신화!

"합격를 대한민국 1위" "실제 수강생 합격를 대한민<u>국 1위"</u>

"강의만족도<u>99% 대한민국 1위"</u>

"평균 강의 재수강을 80%"

"8년간의 검증"모방이 불가능한 커리큘럼"

열정적으로 2018을 시작합니다.

소방기술사 1차 필기 합격자 명단

102회 8명중 4명 합격! 최*일,류*길,허*영,손*경(50%)

103회 17명중 8명 합격! 문*향,송*일,이*열,황*영,이*71,정*응,윤*일,김*백(47%)

104회 5명중 3명 합격! 이*선,잎*혈,박*효(60%)

105회 6명 중 4명 합격! 김*석,서*길,이*열,송*수(67%)

106회 5명 중, 5명 합격! 최*기,명*준,박*권,이*화,김*환(100%)

107회 12명중 5명 합격! 입*창,고*민,박*욱,입*훈,장*일(42%)

108회 16명 중 9명 합격! 장*남,입*수,문*주,김*오,유*석,최*영,권*효,김*호,서*영(57%)

109회 최종 23명 중 10명 합격! 이*역,장*남,서*길,길*선,위*경,합*덕, 이*승,일*수,길*웅,일*훈(45%)

110회 최종 12명 중 6명 합격! 김*오,최*숙,문*주,최*재,권*효,전*인(50%)

111회 최종 9명 중 4명 합격! 박*수,김*윤,김*영,하*동(45%)

112회 최종 14명 중 5명 합격! 노*택,김*근,배*우,송*남,김**(35%)

113회 최종 8명 중 4명 합격~! 전*근, 장*일, 전*진, 김*중(50%)

서울소방학원/(02) 2068-2851

모아소방학원

부산소방학원/(070) 416-1190

≫모아&에듀의 소방기술사반의 Strength!

첫 번째: 대한민국 최고의 강사진!

▷ 최고 전문성을 갖춘 검증된 소방기술사 교수진 6명 강의 중

두 번째: 충분한 공부시간 확보!

▷ 정규반/심화반 수업(상/하 총 88~110시간 확보)

▷ 연구반 수업 매일 총 7~10시간 수업 중

세 번째: Class Line-up!

▷ 토요일/일요일: 기본반 → 심화반 → 연구반

▷ 총 6개 Class 개강 중!

네 번째: 동영상 무료제공!

▷ 동영상(PC+모바일)을 통한 공부환경의 극대화!

다섯 번째: 스터디를 무료제공!

▷ 토요일/일요일: 정규반, 심화반 오전/오후 별도의 스터디돔 제공

▷ 수요일: 연구반 스터디 운영 중

※ 소방기술사 과정 Summary!					
구 분	Class	교 수	개강일정	교 제	
	"모아" 기본반(오전반)	문 기 연 부원 깡	2월 24일 9시~14시30분(5.5시간)	소방기술모아1권 "제까직강"	
토 요 반	"모아"기본반(오우반)	문 기 연 부원장	2월 24일 3시~20시30분(5.5시간)	소방기술모아2권 "제까끽강"	
	압격"요해"심와반	김 정 진 교 수	2월 24일 9시~14시30분(5.5시간)	소방기술사 "요애" "제자끽강"	
	토요 SBR 연구반	유 쾌 안 왕 모 아	2월 24일 9시30분~18시(8시간)	소방기술사 이스토리북 "저자직강"	
일 요 반	"모아" 기본반(오전반)	문 기 연 부원장	2월 25일 9시30분~15시(5.5시간)	소방기술모아 2권 "저자직강"	
	"모아" 기본반(오우반)	문 기 연 부원장	2월 25일 3시~20시30분(5.5시간)	소방기술모아1권 "저자직강"	
	압격찐리 심와반	왕 모 아 원 깡	2월 25일 9시30분~15시(5.5시간)	소방기술사길라잡이 "저자직강"	
	일요 SBR 연구반	김 정 진 왕 모 아	2월 25일 10시~18시(8시간)	소방기술사 이스토리북 "저자끽강"	
 부 산	소방기술사 기본반	이 중 의 교 수	4월 21일 12시30분~18시30분	별도제작교제 "저자직강"	
산에듀	소방기술사 연구반	최 광 림 교 수	4월 21일 12N30~18N30분	별도제작교제 "저자직강"	

제114회 소방기술사 1차 필기시험 문제 (2018년 2월 4일)

제 1 교시 문제

- 1. 비상용승강기의 승강장에 설치하는 배연설비의 구조에 대해 설명하시오.
- 2. 3상 Y부하와 \triangle 부하의 피상전력에 모두 $P_a = \sqrt{3} VI$ [VA]를 사용할 수 있음을 설명하시오.
- 3. Aircraft Fire Extinguisher System이 적용되는 대상의 주요 화재특성을 설명하시오.
- 4. 정온식 감지선형감지기를 교차회로를 구성하고자 한다. 교차회로 방식과 이때의 회로구성 방법을 설명하시오.
- 5. 스윙 체크밸브(Swing Check Valve)와 스모렌스키 체크밸브(Smolensky Check Valve)의 차이점 과 용도에 대하여 설명하시오.
- 6. 폴리우레탄 폼 벽체를 관통하는 단위 면적당 열유동률을 구하시오.
 조건: 벽의 두께는 0.1 [m], 벽 양면의 온도는 각각 20 [℃]와 -10 [℃]이다.
 폴리우레탄 폼의 열전도도는 0.034 [W/m·K]이다.
- 7. 수계소화설비의 주요 구성요소 7가지와 가압송수장치 종류 4가지에 대해 설명하시오.
- 8. 유체기계를 운전할 때 압력의 순간적인 변동과 송출량의 급격한 변화가 일어나는 현상 및 방지대 책에 대해 설명하시오.
- 9. 수계소화설비의 흡입배관 구비조건과 적용할 수 없는 개폐밸브에 대해 설명하시오.
- 10. 건축물의 바깥쪽에 설치하는 피난계단의 건축법상 구조 기준에 대해 설명하시오.
- 11. 소방시설 등의 성능위주설계 방법에서 시나리오 적용기준 중 인명안전 기준에 대하여 설명하시오.
- 12. 취침, 숙박, 입원 등 이와 유사한 용도의 거실에 연기감지기를 설치하여야 하는 특정소방대상물에 대해 설명하시오.
- 13. 보일의 법칙과 샤를의 법칙을 비교하여 물질의 상태에 대한 물리적 의미를 설명하시오.

제 2 교시 문제

- 1. 345 [kV] 전력구에 설치되어 있는 강화액 자동소화설비의 구성과 주요특성, 작동원리를 설명하고, 타 소화설비와 성능을 비교하여 설명하시오.
- 2. 지하 3층, 지상 49층, 연면적 120,000 [m²]인 건축물에 소화설비를 구성하고자 한다. 주된 수원을 고가수조방식으로 적용하였을 때 옥내소화전설비 및 스프링클러설비를 고층, 중층, 저층으로 구분 하여 계통도를 그리고 설명하시오.
- 3. 연기제어를 위한 급배기 덕트 설계 시 외기온도나 바람 등의 영향을 고려하여야 한다. 이때 기류 를 평가하는 CONTAM Program을 수행절차 중심으로 설명하시오.
- 4. 자동화재탐지설비의 음향장치 설치기준을 국내기준과 NFPA 기준을 비교하여 설명하시오.
- 5. 건축물에 화재발생 시 유독가스 발생으로 인한 인명피해를 최소화하기 위한 마감재료의 기준과 수 직화재 확산방지를 위한 화재확산방지구조에 대하여 각각 설명하시오.
- 6. Normal Stack Effect와 Reverse Stack Effect에 의한 기류이동을 도시하여 비교하고, Normal Stack Effect 조건에서 화재가 중성대 하부와 상부에 발생했을 때 각각의 연기흐름을 도시하고 설명하시오.

제 3 교시 문제

- 1. 기존의 옥내소화전을 호스릴(Hose Reel) 옥내소화전으로 변경하는 경우 발생할 수 있는 문제점과 대책을 설명하시오.(조건: 지하 3층, 지상 35층의 공동주택이다. 소화설비의 가압송수장치는 전동 기펌프로서 지하 2층에 설치되었다.)
- 2. 이산화탄소소화설비의 저장방식 및 방출방식에 따른 분류에 대해 설명하시오.
- 3. 수계소화설비 배관의 부식 발생원인과 방지대책에 대해 설명하시오.
- 4. 일반 감지기와 아날로그 감지기의 주요 특성을 비교하고, 경계구역의 산정 방법에 대하여 설명하시오.
- 5. 건축법상 방화구획과 내화구조의 기준을 비교하고, 차이점을 설명하시오.
- 6. 환기구가 있는 구획실의 화재 시 연기 충진(Smoke Filling) 과정과 중성대 형성에 따른 화재실의 공기 및 연기흐름을 3단계로 구분하여 설명하시오.

제 4 교시 문제

- 1. A급, B급, C급 화재에 각각 소화능력을 가지는 수계소화설비와 소화특성에 대해 설명하시오.
- 2. 수계소화설비에 사용되는 물의 특성을 열역학적 선도(Thermodynamic Diagram)에서 삼중점 (Triple point)과 삼중선(Triple Line)으로 구분하여 설명하시오.
- 3. 건축물이 대형화, 고층화, 심층화 되면서 주차장 역시 지하화 되고 있다. 주차장에서 화재 발생 시문제점과 화재 안전성 확보를 위한 대책을 설명하시오.
- 4. 아래 조건과 같은 특정소방대상물의 비상전원 용량산정 방법과 제연설비의 송풍기 수동조작스위치를 송풍기별로 설치해야 하는 이유에 대하여 설명하시오.

<조건>

- 1. 5개의 특정소방대상물이 지하에 설치된 주차장으로 연결되어 있다.
- 2. 주차장에서 하나의 특정소방대상물의 제연구역으로 들어가는 입구에는 제연용 연기감지기가 설치되어 있다.
- 3. 제연용 연기감지기의 작동에 따라 특정소방대상물의 해당 수직풍도에 연결된 송풍기와 댐퍼가 작동한다.
- 5. Y(Star)로 결선된 농형 유도전동기의 선간전압(Line Voltage)이 상전압(Phase Voltage)에 $\sqrt{3}$ 배가 됨을 극좌표형식으로 증명하시오.
- 6. 제연용 송풍기에 가변풍량 제어가 필요한 이유를 설명하시오. 또한 댐퍼제어 방식과 회전수제어 방식의 특징을 성능곡선으로 비교하고, 각 방식의 장, 단점 및 적용대상에 대하여 설명하시오.

제 1교시 문제풀이

1-1. 비상용승강기의 승강장에 설치하는 배연설비의 구조에 대해 설명하시오.

답)

출처 '모아소방기술사 2권 P277

1. 배연창 목적

- 1) 배연창의 목적은 축적된 연기를 배출하는데 있다.
- 2) 일반적으로 건축물의 배연창은 주로 환기목적으로 사용되고 있으나, 소방설비로서의 배연창의 연기배출은 많은 고민을 해야 한다.

2. 배연창 설치대상

1) 배연설비 설치대상

6층 이상인 건축물로서 문집, 종, 판, 수, 의, 교육연구시설 중 연구소, 노유자시설 중 아동 관련 시설·노인복지시설, 유스호스텔, 운, 업, 숙, 위, 관, 제2종 근린생활시설 중 고시원 및 레 거실 (다만, 피난층인 경우에는 제외.)

- 2) 추락방지 안전시설 설치대상
 - 오피스텔에 거실 바닥으로부터 높이 1.2[m] 이하 부분에 여닫을 수 있는 창문을 설치하는 경우
- 3) 11층 이하의 건축물: 소방관이 진입할 수 있는 곳을 정하여 외부에서 주·야간 식별할 수 있는 표시를 하여야 한다.

3. 배연설비 설치기준

1) 건축물의 배연설비

- (1) 건축물에 방화구획이 설치된 경우: 방화구획마다 1개소 이상의 배연창을 설치
- (2) 배연창 설치높이
 - ① 배연창의 상변과 천장 또는 반자로부터 수직거리가: 0.9 [m] 이내.
 - ② 반자높이가 바닥으로부터 3[m] 이상인 경우: 배연창의 하변이 바닥으로부터 2.1[m] 이상
- (3) 배연창의 면적
 - ① 배연창의 유효면적: 1[m²] 이상
 - ② 배연창의 합계면적: 건축물의 바닥면적의 100분의 1 이상(바닥면적의 산정 시 거실바닥면적 의 20분의 1 이상으로 환기창을 설치한 거실 면적은 제외)
- (4) 배연구
 - ① 연기감지기 또는 열감지기에 의하여 자동으로 열 수 있는 구조
 - ② 손으로도 열고 닫을 수 있도록 할 것
 - ③ 배연구는 예비전원에 의하여 열 수 있도록 할 것
- (5) 기계식 배연설비를 하는 경우에는 소방관계법령의 규정에 적합하도록 할 것

2) 비상용승강기의 승강장 배연설비의 구조

- (1) 배연구 및 배연풍도는 불연 재료로 하고, 화재가 발생한 경우 원활하게 배연시킬 수 있는 규모로서 외기 또는 평상시에 사용하지 아니하는 굴뚝에 연결할 것.
- (2) 배연구에 설치하는 수동개방장치 또는 자동개방장치(열·연기감지기에 의함)는 손으로도 열고 닫을 수 있도록 할 것.
- (3) 배연구는 평상시에는 닫힌 상태를 유지하고, 연 경우에는 배연에 의한 기류로 인하여 닫히 지 아니하도록 할 것.
- (4) 배연구가 외기에 접하지 아니하는 경우에는 배연기를 설치할 것.
- (5) 배연기는 배연구의 열림에 따라 자동적으로 작동하고, 충분한 공기배출 또는 가압능력이 있을 것.
- (6) 배연기에는 예비전원을 설치할 것.
- (7) 공기유입방식을 급기가압방식 또는 급·배기방식으로 하는 경우에는 소방관계법령의 규정에 적합하게 할 것.

5. 배연설비의 문제점과 대책

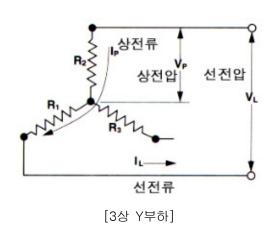
1) 배연설비의 적용 시 문제점(배연설비 설치대상인 경우)

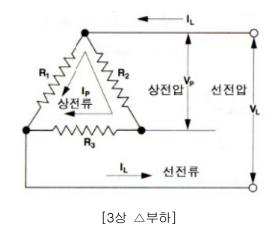
- (1) 감지기 동작으로 인하여 연기를 배출한다면 소화·방화설비와의 유기적인 동작을 하지 못한다.
- (2) 방화구획된 공간에서의 환기지배형화재의 화재의 진압·제어가 가능함에도 불구하고, 신선 한 공기 유입으로 화재의 진압·제어가 불가능 할 수도 있다.
- (3) 상층·인접건물로의 화염확대
 - ① 배연창으로 인한 인접 건물로 연소확대 우려가 있다.
 - ② 배연창에 차열성 또는 차염성의 설치규정이 없다.
 - ③ 배연창의 개방이 감지기 동작시라면 화재는 성장기 화재의 초기에 있는데, 이때 배연창을 개방한다면 화염이 상층으로 확대될 우려가 있다.

2) 대 책

- (1) 건축법규와 소설안의 설치대상과 설치기준 등의 법규를 일원화해야 한다.
- (2) 배연창의 정확한 설치목적을 명시해야 한다.(소화활동설비 또는 피난설비 등)
- (3) 배연창 설치 시 상층·인접 건물로의 연소 확대 대책을 세워야 한다.
- (4) 배연창 설치 시 배연창과 동작시스템의 내열성능이 필요하다.

1-2. 3상 Y부하와 \triangle 부하의 피상전력에 모두 $P_a=\sqrt{3}~VI$ [VA]를 사용할 수 있음을 설명하시오.


답) 출처 '각종자료


1. 3상 Y부하

3상 Y부하	내 용
관련공식	$I_p=I_\ell$ $V_p=rac{V_\ell}{\sqrt{3}}$ $P_a=3I_pV_p$ $I_p: $
피상전력	$P_a=3~V_pI_p=3 imesrac{V_\ell}{\sqrt{3}} imes I_\ell=\sqrt{3}~V_\ellI_\ell$

2. 3상 △부하

3상 △부하	내 용
관련공식	$V_p=V_\ell$ $I_p=rac{I_\ell}{\sqrt{3}}$ $P_a=3I_pV_p$ I_p : 상전류 I_ℓ : 선간전류 V_p : 상전압 V_ℓ : 선간전압
피상전력	$P_a=3~V_pI_p=3\! imes V_\ell\! imes rac{I_\ell}{\sqrt{3}}=\sqrt{3}~V_\ellI_\ell$

1-3. Aircraft Fire Extinguisher System이 적용되는 대상의 주요 화재특성을 설명하시오.

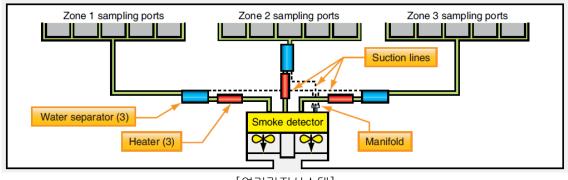
답) 출처 '각종자료

1. 비행기 화재 유형

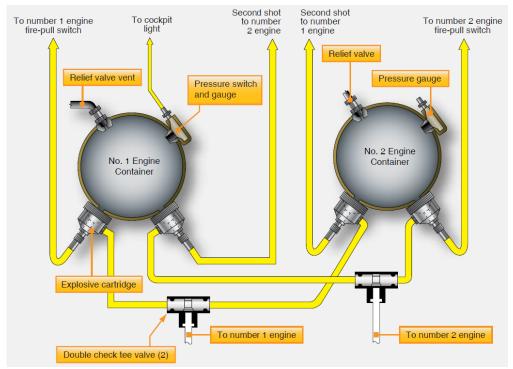
1) 엔진화재

- (1) 엔진화재는 항공기 소화시스템으로 감지와 소화가 가능하다.
- (2) 터빈의 폭발적인 분해로 발생하는 화재는 날개 및 동체로 확산될 수 있다.
- (3) 엔진화재는 재발화 위험이 높으므로 항공기를 착륙시키고 엔진을 육안으로 검사해야 한다.
- (4) 소화설비: 불꽃감지기, 가스계 소화설비(이산화탄소 소화설비, 청정소화설비 등)

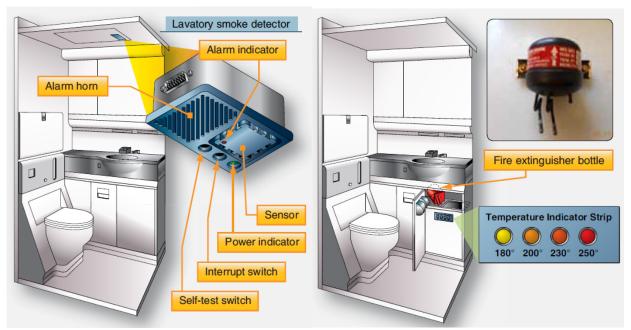
2) 기내화재


- (1) 기내화재는 조기에 화재감지가 가능하여 항공기에 설치된 소화시스템으로 소화가 가능하다.
- (2) 기내화재도 항공기를 착륙시켜서 화재원인과 파손에 대한 조사를 해야 한다.
- (3) 소화설비: 일산화탄소감지기, 할론1211 등

3) 숨겨진 화재


- (1) 화재감지 시스템으로 조기 발견이 어렵고 가장 위험한 유형의 화재이다.
- (2) 화재를 발견하고 접근하기가 어려워 화재 확대로 피해가 증가한다.
- (3) 엔진화재는 재발화 위험이 높으므로 항공기를 착륙시키고 엔진을 육안으로 검사해야 한다.
- (4) 숨겨진 불은 초기에 확인이 힘들어 비상착륙까지 상당한 시간이 소요되어 인명피해가 크다.

2. 비행기 화재위험장소 및 소화설비


화재 위험장소	소화시스템
엔진. 보조동력장치	불꽃감지기, CO ₂ , Halon 1301
шс, <u>тт</u> о пом	할로겐화합물 청정소화약제
화물칸	연기감지기, Halon 1301
객실	CO감지기, Halon1211(휴대용소화기)
 화장실	연기감지기, Halon 1301

[연기감지시스템]

[엔진소화시스템]

[화장실 연기감지기 / 화장실 소화기]

[휴대용 소화기]

1-4. 정온식 감지선형감지기를 교차회로를 구성하고자 한다. 교차회로 방식과 이때의 회로구성 방법을 설명하시오.

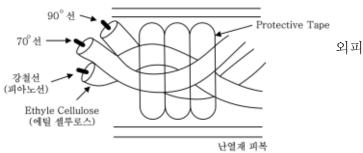
답)

출처 '모아소방기술사 1권 P514

1. 정온식 감지선형 감지기의 개념

- 1) 정온식 감지선형 감지기는 전선 형태로 설치하여 화재로 인해 주위 온도가 일정기준 이상 상승되면 가용 절연물이 용융하는 방식의 대표적 비재용형 감지기이다.
- 2) 차동식 분포형과는 달리 일국소의 화재를 검출하고 주로 길이가 긴 형태의 대상에 적합하다.

2. 감지기의 구조


- 1) 가용절연물(Heat Sensitive Material): 감지부(에틸셀룰로즈)
- 2) 강철선: Actuator
- 3) 내피(Protective Tape)
- 4) 외피(Outer Covering)
 - (1) 방수 및 내용물 보호기능의
 - (2) 공칭작동온도

외피 색상에 의해 구분

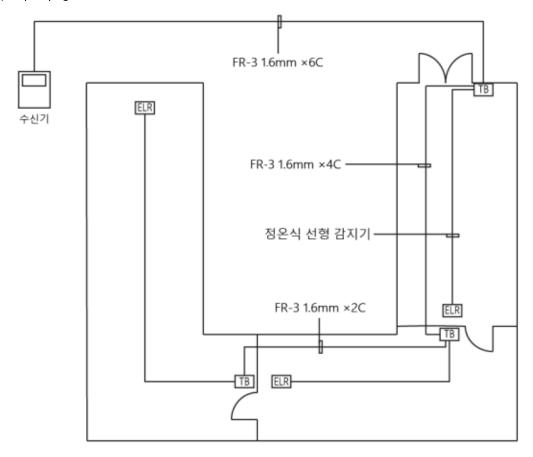
① 백색: 80[℃] 이하

② 청색: 80~120 [℃] 이하

③ 적색: 120 [℃] 초과

[정온식 감지기 구조]

3. 감지기의 작동원리


- 1) 서로 꼬여 있는 강철선의 원래대로 돌아가고자 하는 비틀림 힘을 이용한다.
- 2) 감지부는 내열성이 매우 낮고(열에 녹기 쉬움) 전기적으로 절연인 재료(에틸셀룰로즈)로서, 강철선을 피복하여 새끼처럼 꼬아둔 상태로 있다.
- 3) 화재 시 열에 의해 감지부가 녹으면 꼬여 있는 강철선이 붙어 단락이 발생하여 전류가 흘러 선형 감지기의 DC 24 [V] 전압이 감소된다.
- 4) 이에 따라 수신기에서는 화재경보를 발하며, 몇 미터 지점에서 화재가 발생했는지도 알 수 있다.

4. 교차회로 방식과 회로구성

1) 교차회로 방식

구 분	A 회로	B 회로	
작동온도	70 °	70 °	
설비연동	경보장치 작동	소화설비 작동	

2) 회로구성

5. 정온식 감지선형 감지기의 특성

- 1) 감지기가 설치되어 있는 모든 지점에서 감지가 동일하게 잘된다.
- 2) 같은 회로 내에서도 온도 조건이 다른 선형 감지기간 연결이 가능하다.
- 3) 부식·화학물질·먼지·습기 등이 잘 견딘다.
- 4) 어떠한 시설에서도 설치·철거가 쉽고, 위험 장소에서도 사용이 가능하다.
- 5) 하나의 회로로 비교적 먼 거리까지 포설이 가능하다.
- 6) 일부분이 훼손되면 그 부분만 잘라내어 교체하면 된다. (1실에 1개 이상의 접속단자를 이용하여 접속하기 때문)
- 7) 분포형이지만, 어느 부분에서 동작하더라도 회로구성이 되므로 일국소의 열을 감지한다.
- 8) 전용 수신반을 설치하면, 발화지점의 표시도 가능하다.
- 9) 사용온도의 폭이 비교적 넓다.

1-5. 스윙 체크밸브(Swing Check Valve)와 스모렌스키 체크밸브(Smolensky Check Valve)의 차이점과 용도에 대하여 설명하시오.

답)

출처 '모아 소방기술사 1권 P82

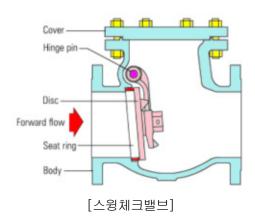
1. 체크 밸브

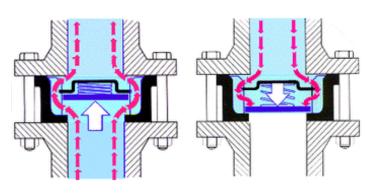
1) 유체를 한쪽 방향으로만 흐르게 하고. 역류를 방지하는 목적으로 사용되는 밸브

2) 리프트 형 (lift type)

- (1) 글로브 밸브와 같은 밸브시트의 구조로서, 유체의 압력에 의해 밸브가 수직으로 개방
- (2) 흐름에 대한 저항이 크고, 구조상 수평배관에만 사용된다.

3) 스윙 형


(1) 핀 또는 힌지에 의해 지지되어 스윙 운동을 하는 밸브로서 역류 흐름에 수직으로 닫힌다.



- (2) 수평 및 수직배관에 사용 가능하며, 마찰 손실이 리프트 형에 비해 적다.
- (3) 누설 우려가 크고, 오물 침전에 의한 불량이 많다.

2. 스윙 체크밸브와 스모렌스키 체크밸브의 차이점과 용도

구 분	스윙체크밸브	스모렌스키 체크밸브
밸브구조	힌지 핀을 중심으로 디스크가 개폐되는 구조	디스크 상부에 스프링이 설치되어 밸브가 차단되는 방향으로 작용
특 징	•개방 시 단면적 변화가 없다. •대용량 유체 이송이 용이 •구조가 간단하다. •동작에 신뢰도가 높다. •와류 발생 시 밸브파손, 소음 발생 •밸브 폐쇄 시 수격 발생	・스프링으로 인한 수격작용 방지 ・구조 복잡하다. ・가격이 비싸다. ・마찰손실이 크다.
용도	・수평배관 ・고가수조, 저수조	• 수직배관 • 펌프토출측 배관

[스모렌스키체크밸브]

1-6. 폴리우레탄 폼 벽체를 관통하는 단위 면적당 열유동률을 구하시오.

조건: 벽의 두께는 0.1 [m], 벽 양면의 온도는 각각 20 [°C]와 -10 [°C]이다. 폴리우레탄 폼의 열전도도는 0.034 [W/m·K]이다.

답)

출처 '모아소방기술사 1권 P97

1. 풀이조건

1) 열전도

·q": 전도에 의한 열류 [W/m²], q'': 전노에 의안 글ㅠ [w/m], k: 열전도율 [W/m·K] L: 물체의 두께 [m], T_1 : 고온측 표면 온도 [K] T_2 : 저온측 표면 온도 [K]

2) 절대온도

T = t + 273 T: 절대온도[K] t: 섭씨온도[[\mathbb{C}]]

2. 풀이방법

1) 고온측 표면온도

$$T_1 = 20 + 273 = 293 [K]$$

2) 저온측 표면온도

$$T_1 = -10 + 273 = 263 [K]$$

3) 열전도 공식에 문제의 조건을 대입하면

$$\dot{q}'' = \frac{k}{L}(T_1 - T_2) = \frac{0.034 \left[W/m \cdot K \right]}{0.1 \left[m \right]} \times (293 - 263) \left[K \right] = 10.2 \left[W/m^2 \right]$$

3. 결 론

- 1) 폴리우레탄 폼 벽체를 관통하는 단위면적당 열유동률: 10.2 [W/m²]
- 2) 고체물질의 열전달은 분자 간 충돌과 자유전자의 이동에 의해서 열이 전달된다.
- 3) 열전도의 특징
 - (1) 고체의 열전도는 기체에서보다 우수하다.
 - (2) 고체에서도 재료에 따라 열전도율이 다르다.
 - (3) 열전도율이 낮은 재료는 주로 단열재 등으로 이용된다.
 - (4) 압력이 낮을수록 열전도는 작아지며, 진공에서는 열전도가 발생되지 않는다.

1-7. 수계소화설비의 주요 구성요소 7가지와 가압송수장치 종류 4가지에 대해 설명하시오.

답)

출처 '모아소방기술사 1권 P103, 화재안전기준

1. 수계소화설비의 주요 구성요소

구 분	내 용
수원	1) 수계소화설비는 소화약제를 물로 사용하는 설비이다.
ㅜ건 	2) 수원은 방수구에서 방출되는 방수량을 20분 이상 확보해야 한다.
	1) 물에 압력을 가해서 최상층 말단에 있는 방수구까지 물을 보내는 장치이다.
가압송수장치	2) 가압송수장치 종류: 펌프방식, 고가수조방식, 압력수조방식, 가압수조방식
	3) 가장 많이 사용되는 방식은 펌프방식이다.
ا ج ال	1) 수원에서 방수구 까지 소화약제인 물을 송수하는 통로이다.
배관 	2) 관의 종류: 배관용탄소강관, 배관용 스테인리스강관, 압력배관용탄소강관 등
비사기	1) 가압송수장치에서 공급된 물을 방출하는 기기이다.
방수구 	2) 방수구에서 소화에 필요한 유량과 압력을 확보해야 한다.
전원	1) 상용전원: 한전에서 공급되는 전원
신전 	2) 비상전원: 상용전원 차단 시 공급되는 전원
	1) 제어반의 종류: 감시제어반, 동력제어반
제어반	2) 감시제어반: 펌프의 제어, 작동여부 확인
	3) 동력제어반: 펌프에 전원을 공급
	1) 내화배선: 전원에 사용되는 경로
배선	2) 내열배선: 조작, 제어에 사용되는 경로
	3) 열에 견디는 성능: 내화배선 〉내열배선

2. 가압송수장치의 종류

1) 고가수조 방식

(1) 개 념: 초고층 건물의 옥상이나 기타 다른 높은 장소에 수조를 설치하여 그 높이차(낙차)를 이용하여 물을 가압, 송수하는 방식이다.

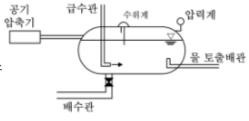
(2) 특 징

- ① 부대시설이 적어 설비가 단순하다.
- ② 작동에 대한 신뢰성이 높다.
- ③ 고층부에서는 규정압력이 나오기 어렵다.
- ④ 설치장소에의 제약이 많다.
- **(3) 양 정**(옥내소화전의 경우)

$$H = H_1 + H_2 + 17 [m]$$

H: 고가수조에 필요한 낙차 (수면이 아닌 흡수구로부터 가장 먼 방수구까지의 높이)

 H_1 : 배관의 마찰손실 수두 H_2 : 호스의 마찰손실 수두


2) 압력수조 방식

(1) 개 념: 물을 저장하고 있는 수조에 공기압축기로 압축공기를 주입해 둔 상태로 유지하여 이 압축공기압력으로 물을 가압 송수하는 방식이다.

(2) 특 징

- ① 작동에 대한 신뢰성이 펌프방식보다는 높다.
- ② 고가수조방식에 비해 설치장소에 제약이 없다.
- ③ 물을 방출하면서 시간이 지남에 따라 수압이 감소된다.
- ④ 고가수조 방식과 함께 사용할 경우, Air Lock 현상의 우려가 있다.
- (3) **소요압력** (옥내소화전의 경우)

$$P = P_1 + P_2 + P_3 + 0.17 [MPa]$$

P: 압력수조에 필요한 공기

P.: 낙차에 의한 손실 압력

 P_2 : 배관에서의 마찰손실 압력

 P_3 : 호스에서의 마찰손실 압력

3) 펌프 방식

(1) 개 념: 펌프의 가동으로 가압송수 하는 방식으로 가장 일반적인 방식이다.

(2) 특 징

- ① 설치장소에 제약이 없다.
- ② 일정한 압력으로 물을 방출할 수 있다.
- ③ 전원공급 차단이나 펌프의 고장 등으로 미 작동될 우려가 있다.
- ④ 설비가 복잡하고 저층부에 과압이 걸릴 수 있다.
- (3) 소요양정 (옥내소화전의 경우)

 $H = H_1 + H_2 + H_3 + 17 [m]$ H: 펌프에 필요한 양정 H_1 : 낙차에 의한 손실수두 H_2 : 핵관의 마찰손실수두 H_3 : 호스의 마찰손실수두

4) 가압수조

(1) 개 념: 가압원인 압축공기 또는 불연성 고압기체에 따라 소방용수를 가압시킨 수조

(2) 장 점

- ① 별도 비상전원, 공기 압축기, 펌프 불필요
- ② 질소가스에 의한 제 2의 소화 기능 발휘
- ③ 소규모시설 적용에 제한적이다.

(3) 설치기준(옥내소화전의 경우)

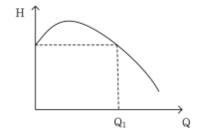
- ① 가압수조의 압력은 규정에 따른 방수량 및 방수압이 20분 이상, 층수가 30층 이상 49층 이하는 40분 이상, 50층 이상은 60분 이상 유지되도록 할 것.
- ② 가압수조는 최대상용압력 1.5배의 물의 압력을 가하는 경우 물이 새거나 변형이 없어야 할 것.
- ③ 가압수조 및 가압원은 건축법 시행령 제46조에 따른 방화구획 된 장소에 설치 할 것.
- ④ 수위계, 급수관, 배수관, 급기관, 압력계, 안전장치, 맨홀 등이 있는 구조일 것.
- ⑤ 가압수조를 이용한 가압송수장치는 국민안전처장관이 정하여 고시한 가압수조식가압송수장 치의 성능인증 및 제품검사의 기술기준에 적합한 것을 설치할 것.

1-8. 유체기계를 운전할 때 압력의 순간적인 변동과 송출량의 급격한 변화가 일어나는 현상 및 방지대책에 대해 설명하시오.

답)

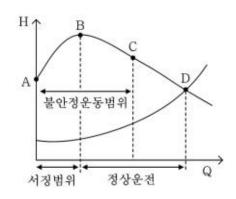
출처 '모아소방기술사 1권 P33

1. 맥동현상의 개념


- 1) 송풍기 또는 펌프의 운전 초기에 저유량 영역에서 발생되는 현상으로, 유량(풍량)과 압력이 주기적으로 변화하여 안정된 운전이 불가능한 현상이다.
- 2) 펌프가 운전 중에 한숨을 쉬는 것과 같은 상태가 되어 펌프의 입구와 출구의 진공계, 압력계의 지침이 흔들리고 동시에 송출유량이 변화하는 현상을 말하며, 송출압력과 송출유량 사이에 주기적인 변동이 일어나는 현상을 말한다.
- 3) 서징현상은 원칙적으로 고유량 송풍기를 저유량 영역에서 사용 시 발생한다. 펌프도 서징현상이 발생할 수 있으나, 소방용 원심펌프의 대부분은 우하향곡선이라서 서징현상이 발생하기 어렵다.

2. 맥동현상의 발생

1) 발생조건


아래의 조건이 모두 만족될 때에만 서징이 발생된다.

- (1) 펌프의 H-Q 곡선이 그림과 같이 산형구배가 있다.
- (2) 토출관로 길고, 중간에 수조·공기고임부가 있다.
- (3) 공기 고임부 이후에 있는 밸브에서 토출량을 조절한다.
- (4) 서징 발생영역인 토출량 Q_1 이하로 운전된다.

2) 발생 메커니즘

- (1) B점의 좌변에서는.
 - ·배관내부의 저항을 이기고 필요한 토출량을 내기 위해서 B점 측으로 이동한다.
 - · 즉, 토출유량 증가에 따른 토출압력이 증가하면서 우변에서 운동하고자 한다.

- (2) B점의 우변에서는,
 - ·배관내부의 유량이 증가함에도 불구하고 B점 이상의 양정을 낼 수 없으므로.
 - ·압력은 반대적인 힘의 방향으로 이동하며 B점의 좌변에서 운동하고자 한다.
- (3) A~B 구간은 서징범위이며, B~C 또는 B~D 구간은 정상운전 범위이다. 단, B \rightarrow C 는 정상운전이지만, C \rightarrow B를 경유해서 A 지점으로 가면 비정상 운전이며 불안정운동이다. 그래서 일부 유체역학에서는 B~C 영역까지 서징범위로 포함하는 경우도 있다.
- (4) A~C 구간은 펌프·송풍기가 불안전운동을 할 수 있는 영역이다.

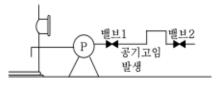
3) 발생원인

- (1) 펌프, 송풍기의 종류 선정을 잘못할 경우(산형 구배형)
- (2) 펌프, 송풍기의 용량 선정을 잘못할 경우(대유량 송풍기를 저유량 영역에서 운전 시)
- (3) 소화용수의 공급이 원활하지 못할 경우
- (4) 배관의 규격이 적합하지 못하거나 배관의 굴곡이 많을 경우

3. 맥동현상의 문제점 및 방지대책

1) 문제점

(1) 규정 방수압 및 규정 방수량 공급


서징 현상은 한번 발생되면 인위적인 토출량조절 이전에는 이 상태가 지속된다. 사람이 없는 상태에서 화재가 발생되어 펌프가 기동한 상태에서 서징현상이 발생되면, 규정 방수압과 유량을 설비에 공급할 수 없다.

- (2) 토출량이 계속 변하므로, 안정된 물 공급이 되지 못한다.
- (3) 흡입 및 토출배관에 주기적인 진동과 소음을 발생시킨다.
- (4) 장시간 서징 상태를 유지하게 되면, 설비가 파손될 수 있다.

2) 펌프의 맥동현상 방지대책

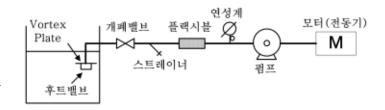
서징 현상은 위의 4가지 조건 중에서 1가지만 만족되지 않아도 발생되지 않는다.

- (1) 펌프의 H-Q 곡선이 우하향 구배인 펌프를 사용한다.
- (2) 유량조절밸브를 펌프토출측 직근에 설치한다.
- (3) 바이패스 관을 사용하여 운전점이 펌프의 우하향 구배 구간이 되도록 한다.
- (4) 배관 중에 수조 또는 기체 상태인 부분이 없도록 배 과한다.

3) 송풍기 맥동현상 방지대책

- (1) 방 풍: 가장 일반적인 방법으로 토출밸브를 열어 풍량을 대기 중으로 방출한다. 낭비가 크고 신뢰도 저하
- (2) By-Pass: 방풍한 여분의 풍량을 송풍기 흡입 측으로 되돌린다.
- (3) 흡입 조임: 흡입댐퍼나 Vane을 조여 성능곡선 우측의 운전 점으로 이동시킨다.
- (4) 우하향 곡선의 송풍기의 사용

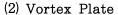
1-9. 수계소화설비의 흡입배관 구비조건과 적용할 수 없는 개폐밸브에 대해 설명하시오.


답)

출처 '모아소방기술사 1권 P126, P81

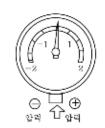
1. 펌프 흡입측 배관

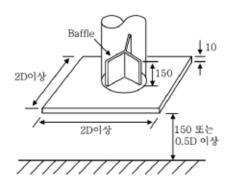
1) 배 관


- (1) 파이프의 길이는 가급적 짧게 할 것
- (2) 배관에 공기고임이 생기지 않도 록 상향 구배를 주어 설치할 것

2) 부속류의 기준

(1) Foot valve


- ① 흡입측 배관내의 물이 수조로 역류됨을 방지(체크밸브의 기능)
- ② 수조내의 이물질이 흡입배관 내로 유입을 방지 (여과 기능)
- ③ 여과망은 10~15 mesh 정도가 적당하며, 부식에 강한 재질로 해야 한다.


- ① 펌프가 물을 흡입할 때, 와류(Vortex)가 생기 는 것을 방지하기 위해 설치하는 판
- ② NFPA의 설치기준
 - ⊙ 크 기: 흡입관 직경의 2배 이상
 - © 위 치: 수조바닥에서 최소 6 in 이상, 흡입관 직경의 1/2 이상
- ③ Plate의 기능: 물의 표면장력을 이용하여 공기가 아닌 물을 흡입함
- ④ Baffle의 기능: 와류가 형성되지 않도록 물의 흡입을 분할함

(3) 연성계

- ① 수원의 수위가 펌프의 위치보다 낮은 경우에 설치하도록 규정 되어 있음(국내기준)
- ② 이러한 경우에는 흡입배관 내의 압력이 항상 대기압보다 낮으며, 연성계는 이러한 부압을 측정하여 물의 흡입 상황을 파악하기 위 한 목적으로 설치함

- ③ 그러나, 펌프의 성능시험 시의 흡입양정을 측정하고, 스트레이너의 막힘 여부를 확인하기 위해 수조 위치에 관계없이 무조건 설치함이 바람직함
- (4) 개폐밸브: 공기고임을 방지하기 위하여 버터플라이 밸브의 사용을 금지한다.
- (5) 레듀샤: 공기고임을 방지하기 위하여 편심레듀샤로 설치해야 한다.

(6) 스트레이너

- ① 흡입측 배관의 이물질이 펌프 내부로 흡입되지 않도록 여과하는 장치
- ② 스트레이너는 여과장치를 주기적으로 청소하지 않으면, 오히려 마찰 손실이 커지고 심 할 경우 흡입관의 막힘을 유발할 수도 있으므로 유지관리에 주의해야 한다.

2. 버터플라이 밸브

- 1) 디스크가 유체 내부에서 회전하여 신속히 개폐되는 형태의 밸브
- 2) 버터플라이 밸브의 특징
 - (1) 개폐의 정도를 확인하기 쉽고, 밸브개폐에 걸리는 시간이 짧다.
 - (2) 구조가 단순하고 가격이 저렴하다.
 - (3) 누설방지가 어렵고 유속이 빠른 흐름에서는 Seal이 손상되기 쉽다.
 - (4) 작동에 많은 힘이 필요하다.
- 3) 펌프 흡입측 배관에 적용 금지되는 밸브이다. 누설이 많고, 완전 개방 시에도 디스크가 유체흐름을 방해하여 공기고임을 발생시킬 수 있기 때문이다.
- 4) 기어식 버터플라이 밸브를 사용하는 것이 바람직하다.
 - (1) 레버식은 작동에 많은 힘이 필요하여 갑자기 폐쇄 또는 개방시키게 되어 수격현상을 일으킬 우려가 크다.
 - (2) 소화배관에는 기어식 버터플라이 밸브를 사용하는 것이 바람직하다.

1-10. 건축물의 바깥쪽에 설치하는 피난계단의 건축법상 구조기준에 대해 설명하시오.

답)

출처 '모아소방기술사 2권 P267

1. 계단의 종류

1) 직통계단

- (1) 특별히 정확한 정의는 없지만, 건축물의 피난층 외의 층에서 피난층, 지상으로 통하는 계단
- (2) 직통계단은 계단, 계단참 등이 연속적으로 설치되어 피난 경로가 명확히 구분되어야 한다.

2) 피난계단

- (1) 직통계단의 구조에 피난상의 안전을 고려한 계단
- (2) 내화구조, 불연마감, 조명 등의 안전기준을 포함한다.

3) 특별피난계단

- (1) 피난계단에 연기침입을 방지하는 전실(노대 또는 부속실)을 설치하여 피난계단보다 피난상의 안전도를 더욱 높인 계단
- (2) 계단의 종류 중 화재 시 가장 안전한 수직적 피난로(Exit) 이다.

4) 옥외피난계단

- (1) 건축물 바깥쪽으로 설치하는 피난계단
- (2) 공연장, 주점 등과 같이 좁은 공간에 많은 인원이 집중되는 시설에서의 피난을 위해 추가로 설치하는 옥외의 피난계단

5) 선 큰(지하층과 피난계단사이의 개방공간)

- (1) 인원집중시설이 일정면적으로 지하층에 설치 시 설치해야 하는 공간
- (2) 지하층에서 피난 시 건물 밖으로 피난하여 옥외계단 등을 통해 피난층으로 대피할 수 있는 천장이 개방된 외부공간이다.

2. 건축물의 바깥쪽에 설치하는 피난계단의 구조

구 분	피난계단의 구조
계단의 설치위치	창문 등으로부터 2 [m] 이상 이격할 것.
계단 출입구	갑종방화문을 설치
계단의 유효너비	0.9 [m] 이상
계단의 구조	내화구조, 지상까지 직접 연결할 것.

1-11. 소방시설 등의 성능위주설계 방법에서 시나리오 적용기준 중 인명안전 기준에 대하여 설명하시오.

답)

출처 '모아소방기술사 2권P328

1. 성능위주설계 방법에서 시나리오 작성 기준

1) 시나리오 적용방법(공통사항)

- (1) 시나리오는 실제 건축물에서 발생 가능한 시나리오를 선정하되.
- (2) 건축물의 특성에 따라 시나리오 적용이 가능한 모든 유형 중 가장 피해가 클 것으로 예상되는 최소 3개 이상의 시나리오에 대하여 실시한다.
- (3) 시나리오 작성 시 인명안전 기준, 피난가능시간 기준 따른 기준을 적용한다.

2) 시나리오 유형

시나리오	화재발생 장소	화재상황
1	일반화재	건물용도, 사용자 중심
2	피난로	출입문 개방 → 급격한 화재확대
3	비상주실	재실자가 있는 공간으로 연소 확대
4	감지기, 헤드가 없는 곳	재실자가 많은 곳으로 연소 확대
5	소방시설 작동범위에 포함되지 않는 곳	아주 천천히 성장하는 화재
6	화재하중이 큰 장소	아주 심각한 화재
7	건물 외부	본 건물로 화재 확대

3) 시나리오 적용 기준⁴⁾

(1) 인명안전 기준

구 분		성능기준	비고		
호흡 한계선	바닥으	로부터 1.8 [m]기준			
열에 의한 영향	6	60 [°C] 이하			
	용도	허용가시거리 한계			
가시거리에	기타시설	5 [m]	단, 고휘도 유도등, 바닥유도등, 초과오드표지 성됩니		
의한 영향	집회시설	시설	축광유도표지 설치시, 집회시설 판매시설 7 [m] 적용 가능		
	판매시설	10 [m]			
	성분	독성기준치			
독성에 의한 영향	CO	1,400 [ppm]	기타, 독성가스는 실험결과에 따른		
	O_2	15 [%] 이상	기준치를 적용 가능		
	CO ₂	5 [%] 이하			

〈비고〉이 기준을 적용하지 않을 경우 실험적·공학적 또는 국제적으로 검증된 명확한 근거 및 출처 또는 기술적인 검토 자료를 제출하여야 한다.

(2) 피난가능시간 기준

(단위: 분)

용 도	W1	W2	W3
사무실, 상업 및 산업건물, 학교, 대학교 (거주자는 건물의 내부, 경보, 탈출로에 익숙하고, 상시 깨어 있음)	⟨ 1	3	> 4
상점, 박물관, 레져스포츠 센터, 그 밖의 문화집회시설 (거주자는 상시 깨어 있으나, 건물의 내부, 경보, 탈출로에 익숙하지 않음)	⟨2	3	> 6
기숙사, 중/고층 주택 (거주자는 건물의 내부, 경보, 탈출로에 익숙하고, 수면상태일 가능성 있음)	⟨2	4	> 5
호텔, 하숙용도 (거주자는 건물의 내부, 경보, 탈출로에 익숙하지도 않고, 수면상태일 가능성 있음)	⟨2	4	> 6
병원, 요양소, 그 밖의 공공 숙소(거주자는 주변의 도움이 필요함)	⟨3	5	> 8

<비고>

W1: 방재센터 등 CCTV 설비가 갖춰진 통제실의 방송을 통해 육성 지침을 제공 할 수 있는 경우 또는 훈련된 직원에 의하여 해당 공간 내의 모든 거주자들이 인지할 수 있는 육성지침을 제공할 수 있는 경우

W2: 녹음된 음성 메시지 또는 훈련된 직원과 함께 경고방송 제공할 수 있는 경우

W3: 화재경보신호를 이용한 경보설비와 함께 비 훈련 직원을 활용할 경우

(3) 수용인원 산정기준

(단위: 1인당 면적 [m²])

사 용용 도	[m²]/인	사 용용 도	[m²]/인		
집회용도		상업용도			
고밀도지역(고정좌석 없음)	0,65	피난층 판매지역 2.8			
TIDIC TIO() THE N () ()	1 4	2층 이상 판매지역	3.7		
저밀도지역(고정좌석 없음)	1.4	지하층 판매지역	2.8 3.7 2.8 3.3 11.1 11.1		
벤치형 좌석	1인/좌석길이45.7 [cm]	보호용도	3.3		
서가지역 9.3		수면구역(구내숙소)	11.1		
열람실	4.6	교정, 감호용도 11.1			
수영장	4.6(물표면)	주거용도 (… 이하생략)			

1-12. 취침, 숙박, 입원 등 이와 유사한 용도의 거실에 연기감지기를 설치하여야 하는 특정소 방대상물에 대해 설명하시오.

답)

출처 '모아소방기술사 P519, NFSC 203

1. 연기감지기 설치장소

- 1) 계단·경사로 및 에스컬레이터 경사로
- 2) 복도(30 [m] 미만의 것을 제외한다)
- 3) 엘리베이터 승강로(권상기실이 있는 경우에는 권상기실)·린넨슈트·파이프 피트 및 덕트 기타 이와 유사한 장소
- 4) 천장 또는 반자의 높이가 15 [m] 이상 20 [m] 미만의 장소
- 5) 특정소방대상물의 취침·숙박·입원 등 이와 유사한 용도로 사용되는 거실
 - (1) 공동주택·오피스텔·숙박시설·노유자시설·수련시설
 - (2) 교육연구시설 중 합숙소
 - (3) 의료시설, 근린생활시설 중 입원실이 있는 의원·조산원
 - (4) 교정 및 군사시설
 - (5) 근린생활시설 중 고시원

6) 취침, 숙박 등의 용도의 거실에 연기감지기를 설치하는 이유

- (1) 최근 공동주택 및 노유자시설 등 화재발생으로 다수의 인명피해가 발생하고 있다.
- (2) 인명피해 저감을 위한 경보설비의 신속한 감지를 위하여 연기감지기를 설치한다.

2. 연기감지기 설치기준

1) 설치수량: 아래 표의 바닥면적당 1개 이상

설치높이	1·2종	3종	
4 [m] 미만	150 [m ²]	50 [m ²]	
4 ~ 20 [m] 미만	75 [m²]	-	

2) 설치간격

- (1) 복도. 통로: 보행거리 30 [m] 이내 (3종: 20 [m])
- (2) 계단. 경사로: 수직거리 15 [m] 이내 (3종:10 [m])
- 3) 천장 또는 반자가 낮은 실내 또는 좁은 실내: 출입구 부근에 설치
- 4) 천장 또는 반자 부근에 배기구가 있는 경우: 그 부근에 설치
- 5) 벽이나 보로부터 0.6 [m] 이상 떨어진 곳에 설치할 것

1-13. 보일의 법칙과 샤를의 법칙을 비교하여 물질의 상태에 대한 물리적 의미를 설명하시오.

답)

출처 '모아소방기술사 2권 P12

1. 보일의 법칙

- 1) 이상기체의 양과 온도가 일정하면 압력과 부피는 서로 반비례한다.
- 2) 공 식

PV = C P: 기체의 압력 V: 기체의 부피 C: 상수

3) 온도가 일정한 상태에서 부피가 증가하면 압력은 감소하고, 부피가 감소하면 압력은 증가한다.

2. 샤를의 법칙

- 1) 기체의 압력이 일정한 상태에서 부피는 온도에 비례한다.
- 2) 공 식

 $\frac{V}{T} = C$ T: 기체의 온도 V: 기체의 부피 C: 상수

3) 기체의 온도가 상승하면 기체의 부피는 팽창하고, 기체의 온도가 하강하면 기체의 부피는 감소한다.

3. 관련식 비교

구분	정의	관계	화학식
보일의 법칙	일정온도에서 기체의 부피는 압력에 반비례 한다.	$V \propto \frac{1}{P}$	$PV=K$ (상수) $P_1V_1=P_2V_2$
샤를의 법칙	일정압력에서 기체의 부피는 온도에 비례 한다.	V $\propto T$	$rac{V}{T}=K$ (상수) $rac{V_1}{T_1}=rac{V_2}{T_2}$
보일-샤를의 법칙	일정온도와 압력에서 기체부피는 압력에 반비례, 온도에 비례	$V \propto \frac{T}{P}$	$rac{PV}{T} = K$ (상수) $rac{P_1 imes V_1}{T_1} = rac{P_2 imes V_2}{T_2}$
아보가드로의 법칙	일정한 온도와 압력에서(STP)일정한 부피를 차지하는 기체의 분자 숫자는 기체의 종류와 상관없이 일정하다.	$V \propto n$	표준상태(0[℃], 1기압)에서 모든 기체 1 mol의 체적은 22.4 L이다.
이상기체 상태방정식	일정한 온도와 압력에서 이상기체의 부피, 압력, 온도 등 성질에 관한 관계식	위식을 결합	$PV = \frac{W}{M}RT \Rightarrow \therefore \rho = \frac{W}{V} = \frac{P \times M}{R \times T}$

제 2교시 문제풀이

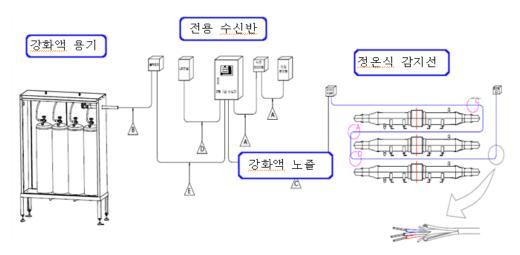
2-1. 345KV 전력구에 설치되어 있는 강화액 자동소화설비의 구성과 주요특성, 작동원리를 설명하고, 타 소화설비의 성능을 비교하여 설명하시오.

답) 출처' 각종 소방 자료

1. 강화액 소화설비 개요

- 1) 초고압 지하전력구 에서 화재 발생 시 설비피해 뿐만 아니라 대형 정전을 동반한 사고파급으로 사회적물의 가능성 초래
- 2) 전력 인프라의 안전성 확보를 위해 지중송전 케이블의 접속점에는 자동소화설비 설치
- 3) 따라서 지중송전 전력구에는 강화액 소화장치를 설치한다.

2. 강화액 특성 및 소화원리


1) 특 성

- (1) 강화액은 무색 또는 황색으로 약간의 점성이 있는 액체로서 알칼리금속염류의 수용액이다.
- (2) 강화액은 탄산칼륨 등의 수용액을 주성분으로 하며 강한 알칼리성(PH 12 이상)으로 비중 은 1.35/15 [℃] 이상의 것을 말한다.
- (3) 강화액은 -30 [[℃]]에서도 동결되지 않으므로 한랭지에서도 보온의 필요가 없을 뿐만 아니 라

2) 소화원리

- (1) $H_2SO_4 + K_2CO_3 \rightarrow K_2SO_4 + CO_2$ 의 반응식에서 발생된 이산화탄소에 의해서 방사된다.
- (2) 부촉매효과(연소의 진행을 단절하고 반응을 억제하는 효과)에 의한 화재의 제어작용이 크며, 탈수·탄화작용으로 목재·종이 등을 불연화하고 재연방지의 효과도 있어서 A급 화재에 대한 소화능력이 증가된다.
- (3) 무상으로 방사하는 경우에는 소규모의 C급 화재에도 적용된다.

3. 강화액 소화 설비의 구성

4. 타 소화설비의 성능을 비교

1) 가스계 소화설비

- (1) 전력구의 특성 성 전역/국소 모두 적용이 어려움
- (2) 심부화재로서 소화가 어려움

2) 미분무 소화설비

소화 설비로서 적응성은 뛰어나지만 설비가 복잡하고 설계 후 입증이 필요 함

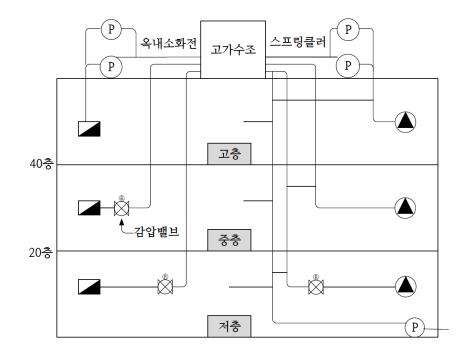
3) 포소화설비

- (1) 전기화재에 적응성이 없음
- (2) 기 설치 소화설비 실패 시 최종 수단으로 소방대에 의한 소화 가능
 - ① 전력구의 통전은 차단
 - ② 약제는 고팽창포 사용
 - ③ 고정포 방출구 및 송수구 설치
- 2-2. 지하 3층 지상 49층 연면적 120,000 [m²]인 건축물에 소화설비를 하고자 한다. 주된 수원을 고가수조방식으로 적용하였을 때 옥내소화전설비 및 스프링클러설비를 고층, 중층, 저층으로 구분하여 계통도를 그리고 설명하시오.

답)

출처'고층건축물의 화재안전기준 (NFSC 604)

1. 고층건축물 화재안전기준


1) 옥내소화전/스프링클러설비 (고가수조 방식)

등급	스프링클러	옥내소화전	
소 의	기준개수 $ imes$ 3.2 $[m^2]$	개수 (최대5개) × 5.2 [m²]	
수원	(50층 이상: 4.8 [m²])	(50층이상: 7.8 [m²])	
옥상수조	면기	제	
급수배관	전용	전용(연결송수관과 겸용가능)	
50층 이상 배관	수직배관 2개 이상 설치,	수직배관 2개 이상 설치	
	각각 유수검지장치 설치	- 구역매한 2개 이경 될지 	
50층 이상	2개 이상의 가지배관 양방향에서		
헤드연결배관	소화수공급, 수리계산에 의한 설계		

2) 연결송수관설비

- (1) 연결송수관설비의 배관은 전용으로 한다. 다만, 주배관의 구경이 100 [mm] 이상인 옥내소 화전설비와 겸용할 수 있다.
- (2) 비상전원은 자가발전설비, 축전지설비 또는 전기저장장치로서 연결송수관설비를 유효하게 40분 이상 작동할 수 있어야 할 것. 다만, 50층 이상인 건축물의 경우에는 60분 이상 작동 할 수 있어야 한다.

2. 계통도

3. 검토사항

1) 고충

- (1) 고가수조 방식이지만 최상부의 경우 법정 방수압이 미달되므로 펌프 설치 이 경우 이 경우 예비 펌프 설치
- (2) 또는 고가수조의 높이를 높게 설치

2) 중층

옥내소화전은 과압(0.7 [MPa] 이상): 감압밸브 설치

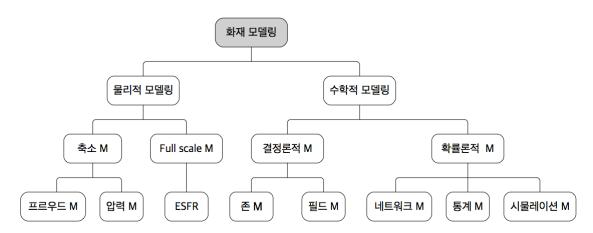
3) 저층

옥내소화전/스프링클러설비 모두 과압: 감압밸브 설치

4. 결 론

- 1) 가압송수장치 중 고가수조 방식은 가장 신뢰성 있으므로 고층건축물인 경우 수계소화설비 설계 시 고가수조방식을 첫 번째로 고려하는 것이 타당하다.
- 2) 고충건축물의 수계 소화설비 설계 시 가장 중요하게 고려할 사항은 과압에 대한 대책이다.

2-3. 연기제어를 위한 급배기 덕트 설계 시 외기온도나 바람 등의 영향을 고려하여야 한다. 이때 기류를 평가하는 CONTAM Program을 수행절차 중심으로 설명하시오


답)

출처' Handbook of smoke control

1. 개요

- 1) 복잡한 경로에서의 유체(공기/연기)의 유동을 분석하는 Network modeling
- 2) 연기 제어(연기 유동 방지) 시스템 분석에 유용하다.

2. 모델링 종류

3. 유동 경로: 개구부

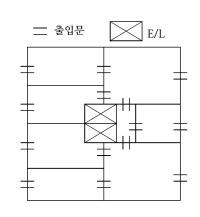
1) 큰 개구부: 개방된 문

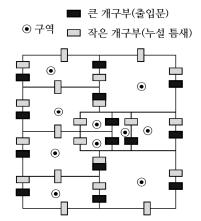
2) 작은 개구부: 폐쇄된 문, 건물 Crack

4. 유동량

1) 압력차

- (1) 발생원인
 - ① 가압시스템
 - ② 화재에 의한 부력
 - ③ 주위 환경: Wind effect, Stack effect
- (2) 부력 관련 식


$$\Delta P = (\rho_a - \rho)gh[Pa]$$
 ρ_a : 공기밀도 ρ : 연기밀도 h: 연기층 높이


2) 유동량

$$m=C\cdot A\,\sqrt{2rac{\Delta P}{
ho}}\,\left[kg/s
ight]$$
 C : 방출계수 A : 개구부 면적 ho : 연기밀도

5. CONTAM Program을 수행절차

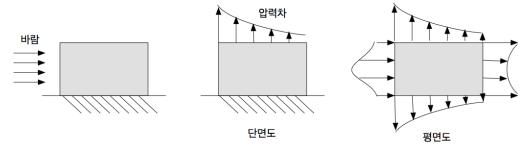
1) 건물의 평면/단면도 작성

2) 데이터 입력

- (1) 누설 면적 및 위치
- (2) 연소생성물 온도 및 농도
- (3) Stack effect

$$\Delta P \ = 3460 \ (\frac{1}{T_O} - \frac{1}{T_i}) \times h_2$$

- ① 내·외부 온도
- ② 중성대 상부 높이
- (4) Wind effect
 - ① 풍속
 - ③ 바람의 방향

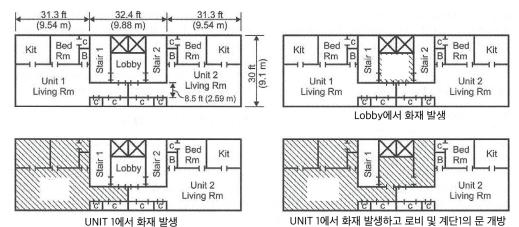

- ② 지표면의 특성(Ground effect)
- ④ 건축물의 높이

$$U=\ U_0(\frac{z}{z_0})^a \left[m/s\right]$$

U: 바람 속도 U_0 : 기준높이에서의 바람 속도

z_0	a: 쪽도 시수	

구분	대도시	중소도시	공항	평평한 곳
속도지수	0.33	0.22	0.14	0.1



[바람에 의한 건축물의 압력 변화]

3) CONTAM Program 실행

4) 출력

(1) 흐름 경로

- (2) 압력차
- (3) 연기/공기 유동량
- (4) 연기 농도

2-4. 자동화재탐지설비의 음향장치 설치기준을 국내기준과 NFPA기준을 비교하여 설명하시오.

답) 출처'NFSC 203, NFPA72

1. 개 요

- 1) 음향장치는 피난과 관련하여 건축물 특성. 점유자 특성 피난전략 등을 고려하여 설치한다.
- 2) 국내는 NFPA의 경우 건축물의 특성에 의해 음향장치를 발신하는 반면, NFPA의 경우 점유자의 이용특성, 화재 시 행동요령 등을 고려하여 설치하고 있다.

2. NFSC 기준

- 1) 주음향 장치는 수신기의 내부 또는 그 직근에 설치할 것
- 2) 층수가 5층 이상으로서 연면적이 3,000 [m²]를 초과하는 특정소방대상물의 경보
 - (1) 2층 이상의 층에서 발화한 때에는 발화층 및 그 직상층에 경보를 발할 것
 - (2) 1층에서 발화한 때에는 발화층·그 직상층 및 지하층에 경보를 발할 것
 - (3) 지하층에서 발화한 때에는 발화층·그 직상층 및 기타의 지하층에 경보를 발할 것
- 3) 지구음향장치
 - (1) 특정소방대상물의 층마다 설치
 - (2) 하나의 음향장치까지의 수평거리가 25 [m] 이하가 되도록 하고, 해당 층의 각 부분에 유효하게 경보를 발할 수 있도록 설치할 것.
 - (3) 비상방송설비의 화재안전기준(NFSC202)에 적합한 방송설비를 자동화재탐지설비의 감지 기와 연동하여 작동하도록 설치한 경우에는 지구음향장치를 설치하지 아니할 수 있다.
- 4) 음향장치 기준
 - (1) 정격전압의 80 [%] 전압에서 음향을 발할 수 있는 것으로 할 것
 - (2) 음량은 부착된 음향장치의 중심으로부터 1 [m]떨어진 위치에서 90 [dB] 이상이 되는 것으로 할 것
 - (3) 감지기 및 발신기의 작동과 연동하여 작동할 수 있는 것으로 할 것
- 5) 제3호에도 불구하고 제3호의 기준을 초과하는 경우로서 기둥 또는 벽이 설치되지 아니한 대형공간의 경우 지구음향장치는 설치 대상 장소의 가장 가까운 장소의 벽 또는 기둥 등에 설치할 것

3. NFPA72 기준

- 1) 평균 주변소음레벨이 105 [dBA] 이상이 경우, 공공모드는 시각경보장치를 사용해야 한다.
- 2) 총 음압레벨은 최소 가창거리에서 110 [dBA]을 초과하지 않아야 한다.

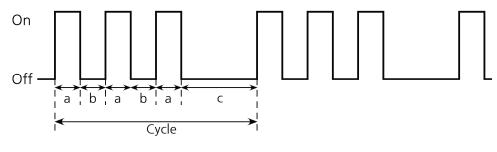
3) 공공 운전 모드 (Public operating mode)

(1) 평균주변 음량보다 15 [dB] 이상 또는 최소 60초간 지속되는 최대음량보다 5 [dB] 이상 인 것 중 큰 것 적용

(2) 평균주변 음량[dBA]

구 분	업무	교육	산업	지하/무창층	주거
평균주변 음량[dBA]	55	45	80	40	35

4) 전용 운전 모드 (Private operating mode)


- (1) 화재 시 규정된 조치를 취해야 하는 책임이 있는 점유자에게 경보를 하기 위한 모드
- (2) 경보대상자
 - ① 감시실의 운전자
 - ② 건물안내 담당자
 - ③ 간호사실의 간호원
 - ④ 건물관리자 및 대응 팀원
- (3) 평균주변 음량보다 10 [dB] 이상 또는 최소 60초간 지속되는 최대음량보다 5 [dB] 이상 인 것 중 큰 것 적용

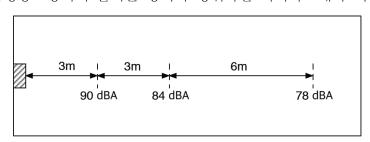
5) 취침 지역 (Sleeping Area)

평균주변 음량보다 15 [dB] 이상 또는 최소 60초간 지속되는 최대음량보다 5 [dB] 이상 인 것 또는 중 큰 것 적용. 단 최소음량 75 [dB] 이상

4. NFPA 72 특성

1) 경보 패턴

a: $0.5s \pm 10\%$


b: $0.5s \pm 10\%$

c: $1.5 s \pm 10 \%$

전체 cycle: $4s \pm 10\%$

2) 6dB rule

음향통보장치의 출력은 장치와 청취자간 거리가 2배가 되면 6 [dB] 감소된다.

【보충】

፠ dBA

- 1. 음향레벨은 일반적으로 데시벨 [dB] 즉 1/10 벨 단위를 사용해 측정된다.
- 2. 음압계를 사용하여 측정할 때 운전자는 A-가중, B-가중, 또는 C-가중을 선택 할 수 있다.
- 3. C-가중치는 70 [Hz] ~ 4,000 [Hz]에서 일반적으로 평탄하고 B-가중치는 300 [Hz] ~ 4,000 [Hz]에서 일반적으로 평탄하다.
- 4. A-가중치는 사람의 귀가 덜 민감한 주파수에 대한 측정 감도를 감소시키기 위해 입력 신호를 필터링하며 600 [Hz] ~ 1.000 [Hz]에서 비교적 평탄하다.
- 5. 이를 통해 사람의 귀로 들리는 가장 중요한 명료도 구성요소를 제공하는 오디오 스펙트럼 부분을 시뮬레이트하는 가중치가 도출된다.
- 6. 측정 단위는 여전히 dB이지만 A-가중 필터의 사용을 명시하는 약칭은 일반적으로 dBA이다

【보충】

※ 음량 (Loudness)

- 1) 음의 질은 따지지 않고 크기만으로 인간의 가청 여부를 고려한 생리학적 수치
- 2) 영향인자
 - (1) 습도, 공기 밀도
 - (2) 주파수: 큰 주파수일수록 소리가 크게 들리고, 작은 주파수 일수록 작게 들린다.
 - (3) 음워의 위치
 - (4) 공간의 형태 및 내장재 재질

※ 음압 [SPL(sound pressure level)]

- 1) 음파가 매질 속을 지날 때 매질의 각 지점에서 발생하는 압력의 변화량을 말한다.
- 2) 단위 [dB]

 $dB = 20\log \frac{\text{소리의 세기}}{\text{기준음의 세기}}$

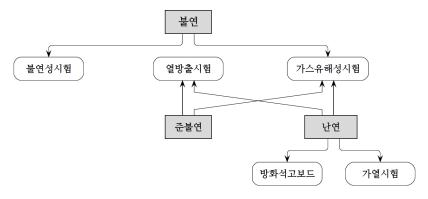
기준음의 세기: $2 \times 10^{-5} [Pa]$

- 3) 음압(dB)의 크기가 동일하여도 진폭과 주파수에 따라 가청량이 달라질 수 있다. NFPA72에서는 인간의 가청 여부와 가장 주요한 인자인 주파수에 가중치를 부여한 [dBA]를 적용
- 4) 동일한 척도로 측정된 2개 소음 레벨간 차이는 항상 dBA이아니라 dB로 표시한다.

2-5. 건축물에 화재발생시 유독가스 발생으로 인한 인명피해를 최소화하기 위한 마감 재료의 기준과 수직화재 확산방지를 위한 화재확산방지구조에 대하여 설명하시오

답)

출처' 소방기술사 요해 1권 P 324, 339


1. 개요

- 1) 내장재는 발화, 연소 확대, 독성가스 발생 그리고 Flash over의 발생 등과 밀접한 관계가 있다.
- 2) 화재의 초기 화재확대 방지를 위해서, 피난자의 안전 확보를 위해서라도 내장재의 선택에 신중을 기할 필요가 있다. 이런 이유로 인해서 내장재는 성능기준을 정하여 관리하고 있다
- 3) 「건축법」제52조 및「건축법시행령」제61조에서 규정하고 있으며 건축물의 피난방회구조 등의 기준에 관한 규칙」에서 불연재료, 준불연재료, 난연재료로 구분하여 그 기준을 정하고 있다.
- 3) 화재 확산 방지구조
 - (1) 특정 건축물의 외벽에는 불연재료 또는 준불연재료를 마감재로 사용하여야 한다.
 - (2) 다만, 고층건축물의 외벽을 국토교통부장관이 정하여 고시하는 화재 확산 방지구조 기준에 적합하게 설치하는 경우에는 난연재료를 마감재로 사용할 수 있다

2. 내장재가 갖추어야 할 방화특성

- 1) 내착화성
- 2) 내발열성
- 3) 내발연성
- 4) 내유독가스 발생성
- 5) 방화상 유해한 변형, 균열, 용융 등이 없을 것

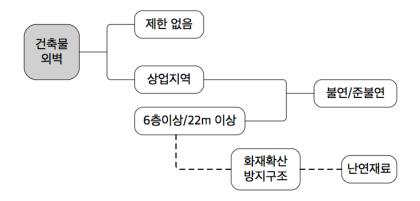
3. 내장재 시험

[내장재 시험 종류]

- 1) 불연재료: 불에 타지 아니하는 성질을 가진 재료
 - (1) 불연성 시험

- (2) 연소가스 유해성 시험
- 2) 준불연재료: 불연 재료에 준하는 성질을 가진 재료
 - (1) 열방출률 시험

(2) 연소가스 유해성 시험


3) 난연재료: 불에 잘 타지 아니하는 성능을 가진 재료

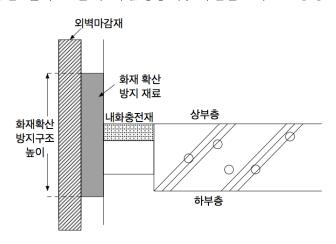
- (1) 열방출률 시험
- (2) 연소가스 유해성 시험
- (3) 아래의 경우는 제외
 - ① 복합자재로서 건축물의 실내에 접하는 부분에 12.5 [mm]이상의 방화석고보드로 마감
 - ② KS F 2257-1(건축 부재의 내화 시험 방법)에 따라 내화성능 시험한 결과 15분의 차염 성능 및 이면온도가 120 [K] 이상 상승하지 않는 재료로 마감

재료구분	시험방법		
불연재료	불연성 시험, 연소가스 유해성 시험		
준불연재료	열방출률 시험, 연소가스 유해성 시험		
 난연재료	열방출률 시험, 연소가스 유해성 시험(또는 가열시험)		

4. 내장재 성능기준

시험방법	시험기준	평가방법
	• 일정한 가열온도 (750±5	
불연성 시험	[℃])	• 온도상승: 최종평균온도를 20K 이하 상승
(불연재료)	에서 20분 가열	• 질량감소율: 30 % 이하
	• 3회 실시	
	• 가열강도: 50 [kW/m²])	• 총 방출열량: 8 [MJ/m²] 이하
열방출률시험	• 3회 실시	• 최대 열방출률: 10초 이상 연속으로 200
(준불열,난연)	• 가열시간	[kW/m²]0 ōŀ
	준불연: 10분 / 난연: 5분	• 방화상 유해한 균열, 구멍 및 용융 등이 없을 것
가스유해성 시험 (불연, 준불연, 난연)	• 가열시간: 6분	• 쥐의 행동정지시간이 9분 이상 경우 합격 (기본횟수 2회)
가열시험 (난연)	• 가열온도 15분	차염성 차열성: 이면온도가 120 [K] 이상 상승하지 않는 재료

5. 화재 확산 방지구조 (건·피·방 24조 ⑤)


1) 수직 화재 확산 방지

2) 구조

외벽마감재와 외벽마감재 지지구조 사이의 공간을 다음의 하나에 해당하는 재료로 매 층마다 최소 높이 400 [mm]이상 밀실하게 채운 것.

3) 화재확산 방지 재료

- (1) 12.5 [mm]이상의 방화 석고 보드
- (2) 석고 시멘트판 6 [mm]이상인 것 또는 6 [mm]이상의 평형 시멘트판인 것
- (3) 미네랄울 보온판 2호 이상인 것
- (4) KS F 2257-8(건축 부재의 내화 시험 방법-수직 비내력 구획 부재의 성능 조건)에 따라 내화성능 시험한 결과 15분의 차염성능 및 이면온도가 120[K] 이상 상승하지 않는 재료

[화재확산 방지구조]

구분	재질	구께 및 규격
KS F 3504	방화 석고 보드	12.5 [mm]이상
KS L 5509	석고 시멘트판	6 [mm]이상
KS L 5114	평형 시멘트판	6 [mm]이상
KS L 9102	미네랄울 보온판	2호 이상
VO E 00E7 0		• 15분의 차염성능
KS F 2257–8		• 이면온도가 120 [K] 이상 상승하지 않는 재료

6. 결 론

- 1) 최근 건축물의 동향을 보면 고층화·심층화·대형화 되면서 내장재 또한 다양화 되고 있으며, 고 분자 제품을 사용하여 화재 시 인명피해 또한 크게 발생하고 있다. 화재 시 인명 피해는 대부 분 연기에 의해 발생되고 있으며 그 많은 부분이 내·외장재에 영향을 받고 있다.
- 2) 내·외장재료는 이와 같은 특성 등을 고려하여 선정하여야 하며, 또한 출화 위험이 높은 공간 과 피난 방호의 필요가 있는 공간에 대해서는 내장의 불연/난연화가 필요하다.

2-6. Normal Stack Effect와 Reverse Stack Effect에 의한 기류이동을 도시하여 비교하고, Normal Stack Effect 조건에서 화재가 중성대 하부와 상부에 발생했을 때 각각의 연기의 흐름을 도시하고 설명하시오.

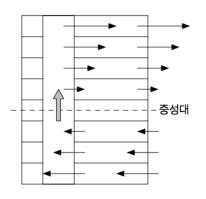
답)

출처' 소방기술사 요해 1권 P 162

1. 개 요

- 1) Stack effect는 비교적 낮은 온도의 연기를 매우 효과적으로 이동하게 하여 일반적으로 예상되지 않는 곳으로 유동시킨다.
- 2) 고층건물에서의 낮은 부분에서의 화재는 매우 급속히 연기가 건물 상부까지 이동.

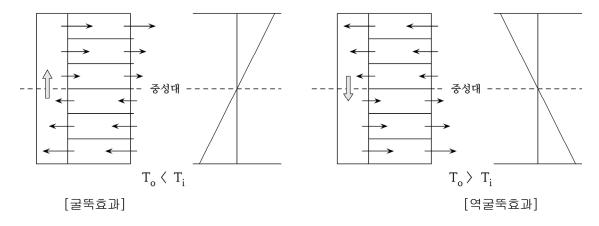
2. Stack effect 정의


평상 시 서로 다른 온도(밀도)를 가지고 서로 연결되는 두 개의 공기 기둥 때문에 발생하는 압력 차로서 계단, 샤프트 등의 수직 공간이 있는 고층 빌딩에서 내부와 외부의 온도차에 의한 부력에 의해 유도되는 압력차에 의한 연기 유동

3. 영향인자

- 1) 건물의 높이
- 2) 건물의 실내와 실외의 온도차.
- 3) 건물 외벽의 기밀도
- 4) 건물 내부 바닥의 누설 면적

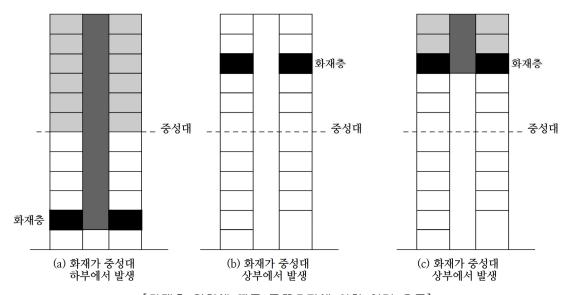
$$\Delta P = 3460 \; (\frac{1}{T_O} - \frac{1}{T_i}) \times h_2$$


$$\frac{h_2}{h_1} = (\frac{A_1}{A_2})^2 \frac{T_i}{T_o}$$

[Stack effect]

4. 굴뚝효과와 역굴뚝효과

건축물 내부온도 (T_i) 와 외부 온도 (T_a) 의 크기에 따라 유동 방향이 다르다


5. 중성대에 의한 연기 유동

1) 중성대 하부에서 화재 발생

아래 (a)처럼 연기가 샤프트로 유동 후 연기의 부력 및 stack effect에 의해 상승 후 다시 거실로 연기가 유입된다.

2) 중성대 상부에서 화재 발생

- (1) 화재에 의한 부력보다 stack effect에 의한 압력이 큰 경우 그림(b)처럼 연기 유동은 없다.
- (2) 화재에 의한 부력보다 stack effect에 의한 압력이 작은 경우 그림(c)처럼 연기 유동

[화재층 위치에 따른 굴뚝효과에 의한 연기 유동]

6. 감소 대책

- 1) 건축물 외벽의 기밀도
- 2) 건축물 층간 구획 기밀도
- 3) 수직 샤프트 길이 제한
- 4) 건축물 최하층 및 최고층 외부 문 기밀성 유지

7. 결 론

- 1) 건물에서 온도가 낮은 차가운 연기를 매우 효과적으로 이동하게 하여 일반적으로 예상되지 않는 곳으로도 이동하게 한다.
- 2) 건물에서의 낮은 부분에서의 화재는 매우 급속히 연기가 건물 상부까지 이동하게 된다.

제 3교시 문제풀이

3-1. 기존의 옥내소화전을 호스릴(Hose Reel) 옥내소화전으로 변경하는 경우 발생할 수 있는 문제점과 대책을 설명하시오.

<조 건>

- 지하 3층, 지상35층의 공동주택이다.
- 소화설비의 가압송수장치는 전동기펌프로서 지하2층에 설치되었다.

답)

출처 '이중희 소방기술사

1. 개 요

- 1) 공동주택의 경우 화재 발생 시 인명피해가 가장 높은 건축물 중 하나
- 2) 최근 고층화, 심층화되고 소규모 가구증가로 화재 시 초동 대응을 미흡의 문제로 호스릴소화 전을 많이 설치하는 추세
- 3) 호스릴소화전 설치 가장 큰 문제점은 구경축소에 따른 압력손실 증가
- 4) 기존 건축물에 소화전 변경 설치시 아래와 같은 문제점을 고려하여 시공 필요

2. 호스릴소화전 변경

1) 소방호스와 호스릴 장단점

기존 소화전(40A)	호스릴소화전(25A)
고중량, 고반발력	• 조작이 간편
→ 노유자 등 사용 곤란	● 누구나 쉽게 사용가능
구조적 꼬임, 접힘 등 요인으로 즉시 방수 불가	원형 유지로 신속한 방수 가능
화점까지 수평거리가 호스길이보다 가까울 때에도 호스를 전체 펼쳐야 함 → 신속한 소화활동 불가	화점이 호스 전장 이하일 때도 어느 곳에서나 신속 하게 방사 가능
2인 이상 공동조작과 훈련이 필요	조작이 간단하여 1인 사용가능
호스가 접혀서 보관 → 점착현상으로 누수 발생	항상 원형상태 유지 → 점착현상 없음

2) 호스릴 소화전의 문제점

(1) 관경 축소에 따라 호스 마찰손실 증가(유속 증가) → 방수압력 미달 우려 40 [A](150 [lpm]의 경우 12 [m]) → 25 [A](130 [lpm]의 경우 32.9 [m])

시험항목	시험기준	시험결과					비고	
		호스길이 및 전개상태		유량 (Ipm)	전단 (kg/c㎡)	후단 (kg/c㎡)	압력손실 (kg/c㎡)	
	드럼에 릴호스를	25 [m]	2[m] 푼 상태	111.2	5.03	1.64	3.39	
기타	연결한 후 후	25 [m]	전체 푼 상태	130.8	5.01	1.72	3.29	
	압력손실 시험	30 [m]	2[m] 푼 상태	101.0	5.03	1.30	3.73	
		30 [m]	전체 푼 상태	121.3	5.06	1.82	3.24	

압력 손실 의뢰 성적서 - 소방산업기술원 자료

(2) 호스 마찰손실 증가에 따른 양정 재계산시 양정 증가 펌프의 양정 = $H_1 + H_2 + H_3 + 17[m]$

여기서, H_1 : 건물 높이 실양정, H_2 : 배관 마찰손실수두, H_3 : 호스 마찰손실수두

(3) 양정 증가에 따른 펌프동력 증가

$$P = \frac{0.163QH}{\eta} \times k [kW]$$

 \therefore H \uparrow \rightarrow P \uparrow

- (4) 양정 증가에 따른 사용압력(체절) 증가로 압력 배관 구간 증가
- (5) 펌프 동력 증가에 따른 비상전원 용량 부족 발생
- \therefore 압력(마찰)손실 \uparrow \to 펌프 양정증가 \uparrow \to 압력배관 구간 \uparrow \to 동력증가 \uparrow \to 비상전원용 량 \uparrow
- (6) 법정 방사량 측정이 곤란: 형식 승인된 직사형관창이 없음
- (7) 법적 유속 제한(4m/s)의 초과가 우려됨
- (8) 압력상승에 의한 과압구간 증가로 소화수원 조기 고갈

3) 호스릴 소화전 사용 시 대책

(1) 압력손실 축소 대책마련: 호스의 내장 재질 변경

$$\triangle P[MPa/m] = 6.053 \times 10^4 \times \frac{Q^{1.85}}{C^{1.85} \times D^{4.87}} \times L$$

여기서, △P: 1[m]당 손실되는 압력, Q: 유량[lpm], C: 조도, D: 배관의 내경[m] → 조도가 큰 재질의 호스 사용으로 손실을 축소

- (2) 수리계산방식 적용하여 압력 분포 재계산하여 손실 축소 방안마련(유속 제한 반영)
- (3) 압력 상승에 따른 고양정 펌프로 교체 또는 펌프를 직렬로 추가 설치
- (4) 압력 증가에 대한 과압구간에 압력 배관 시공
- (5) 비상발전기 용량 부족부분에 대한 발전기 병렬 증설 시공
- (6) 수리계산 방식 적용 시 유속검토를 통한 수원량을 확보 고려

3-2. 이산화탄소화설비의 저장방식 및 방출방식에 따른 분류에 대해 설명하시오.

답)

출처 '이중희 소방기술사, 모아소방기술사 1권 P407

1. 개 요

1) 이산화탄소소화설비의 장단점

고 압 식	저 압 식
● 심부화재 적합	 ● 질식의 우려 발생
● 화재 진화 후 깨끗	♥ 글먹러 무너 글엉 → 20% 농도시 질식사
→ 화재조사 용이	^ 20% 등도시 필격시 ● 방사시 동상의 우려와 소음이 큼
• 피연소물에 피해가 적음	♥ 당시시 등당의 구너되 꼬금이 ㅁ ● 설비가 고압으로 특별한 주의 및 관리 필요
• 비전도성이므로 전기화재 가능	♥ 얼마/ 꼬갑으도 독일인 구의 및 전디 일표

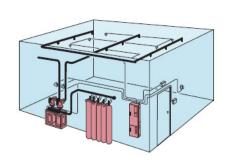
- 2) 상기의 특성을 고려하여 재실자가 없는 설치대상물에 많이 적용되고 있음
- 3) 약제 저장방식은 고압식, 저압 식으로 분류하고, 방출방식은 전역방출, 국소방출, 호스릴방식으로 분류함

2. 이산화탄소화설비 약제저장방식의 분류

구 분	고 압 식	저 압 식	
저장압력	상온(20[℃])에서 6[MPa]	-18[°C]에서 2.1[MPa]	
저장용기	45[kg]/68I 용기를 표준으로 설치	대형 저장탱크 1대를 설치	
충전비	1.5 ~ 1.9(기동용기 1.5)	1.1 ~ 1.4	
배관	Sch80	Sch40	
방사압력	분사헤드 기준 2.1[MPa]	분사헤드 기준 1.05[MPa]	
내압시험압력	25 [MPa] 이상	3.5 [MPa]이상	
배관압력	선택밸브 1차 4[MPa], 2차 20[MPa]	2 [MPa]	
용기실	저압식에 비해 일정한 용기실 면적으로 확보	고압식에 비해 용기실 면적의 축소가 가능	
아테라기초	● 현장 측정	• 원격 감시	
약제량검측	• 액화 가스레벨 또는 저울 이용	• CO ₂ Level Monitoring 장치 이용	
· > 다	● 불 편	● 편 리	
충전 	• 재충전시는 용기별로 해체 및 재부착	• 설비 분리 없이 연장 충전 가능	
안전장치 안전밸브		액면계, 압력계, 압력경보장치, 안전밸브, 파괴봉판 등	
 적용	소용량의 방호구역	대용량의 방호구역	

저압식

고압식


3. 이산화탄소화설비 방출방식 분류

1) 방출방식에 의한 분류는 전역방출방식(Total Flooding System), 국소방출방식(Local Application System), 호스릴방식(Hand hose Line System)의 3종류 구분

구분	전역방출방식	국소방출방식	호스릴방출
방호구역	구획	구획안함	구획안함
방호대상	방호구역 공간 자체	미구획된 장소의 장치물	미구획된 장소의 장치물
약제량	방호구역 체적	장치물의 표면적이나 체적	하나의 노즐(90 [kg])
동작방식	자동	자동	수동

2) 방출방식 정의

- (1) 전역방출방식: 고정식 이산화탄소 공급 장치에 배관 및 분사헤드를 고정 설치하여 밀폐 방호구역 내에 이산화탄소를 방출하는 설비
- (2) 국소방출방식: 고정식 이산화탄소 공급 장치에 배관 및 분사헤드를 설치하여 직접 화점에 이산화탄소를 방출하는 설비로 화재발생부분에만 집중적으로 소화약제를 방출하도록 설치하는 방식
- (3) 호스릴방식: 분사헤드가 배관에 고정되어 있지 않고 소화약제 저장용기에 호스를 연결하여 사람이 직접 화점에 소화약제를 방출하는 이동식 소화설비

전역방출방식

국소방출방식

호스릴방식

3) 약제량

(1) 전역방출방식

구분	표면 화재			심트	쿠 화재	
	● 약제량 W = VK1 + AK2 여기서, V: 체적[m³], A: 개구부면적[m²] K1: 기본량(아래표), K2: 5 kg/m²(개구부면적은 전체 표면적의 3%이하)			● 약제량 W = VK1 + 여기서, V: 체적[m³], A K1: 기본량(아래표),		n ²]
	방호구역체적	소화약제량	최저한도양	K2: 10 kg/m²(개구부면적	석은 전체 표면 ²	적의 3%이하)
	45m³미만	1.0 kg/m³	45 kg	방호대상물	소화약제량	설계농도
약	45~150㎡미만	0.9 kg/m³	45 kg	유입식 기기 없는	1.3 kg/m³	50 %
약 제	150~1450㎡미만	0.8 kg/m³	135 kg	전기실	1.5 Kg/ III	30 %
량	1450m³ 이상	0.75 kg/m³	1,125 kg	체적 55㎡미만 전기실	1.6 kg/m³	50 %
	● 설계농도 34% 이상 W = VK1×h + AK2 보 ○		서고,박물관,전자제 품 창고, 목재가공품창고	2.0 kg/m³	65 %	
	78 ³ 71		집진설비, 고무류, 면화류, 모피,석탄 등 저장창고	2.7 kg/m³	75 %	
	1 30 34 40 50 60 →설계농도(%)					

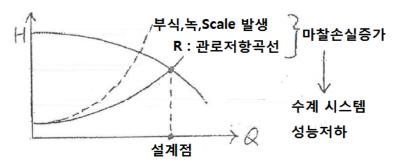
(2) 국소방출방식

화재구 분	입면화재	평면화재	
	$Q[kg] = V \times K \times h$	$Q[kg] = S \times K \times h$	
		S: 유면 표면적[m^2],	
	V: 방호공간의 체적 $[m^3]$	K: 방출율(13 [kg/ m^2])	
약제량	K: 방출율(체적당 약제량)[kg/m³]	h: 할증계수(고압식: 1.4 저압식: 1.1)	
	h(할증계수): 고압식: 1.4 저압식: 1.1	〈조건〉	
	※ 방호공간: 방호대상물 각 변에서 0.6[m]를	• 윗면이 개방된 용기에 저장할 경우	
	연장하여 둘러싸인 부분의 공간	• 화재 시 연소면 한정, 가연물이 비산할 우려가	
		없는 경우	

(3) 호스릴방식: 하나의 노즐에 대하여 90kg 이상

4) 약제 방출시간

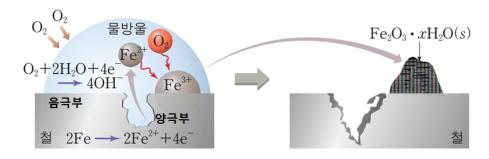
7 8	전역방출방식		국소방출방식		호스릴설비	
구 분	일반건 축물	위험 물 제조소	일반건 축물	위험 물 제조소	일반·위험물	
표면화재	60초(1분)					
심부화재	7분 이내 (2분내 30% 도달)	60초 이내	30초 이내	30초 이내	20 [℃] 에서 분당 60kg 이상	


3-3. 수계소화설비 배관의 부식 발생원인과 방지대책에 대해 설명하시오.

답)

출처 '이중희 소방기술사, 모아소방기술사 1권 P85

1. 개 요


- 1) 금속이 주위환경과 전기화학 반응에 의해 산화•소모되는 현상인 부식은 소화시스템에서 많은 무제점을 야기한다.
- 2) 부식은 배관의 마찰손실의 증가와 경도의 저하 등으로 소화시스템의 신뢰성이 나빠짐
- 3) 부식 \uparrow \rightarrow 관로저항곡선 \uparrow \rightarrow 마찰손실 \uparrow \rightarrow 수계시스템 성능 \downarrow

2. 부식 발생 메커니즘

- 1) 양극 반응: 금속이 전해질 속에서 전자를 잃고, 양이온이 되어 전해질 속으로 녹음 $2Fe \rightarrow 2Fe^{2+} + 4e^{-}$: 산화반응
- 2) 음극 반응: 양극에서 발생된 이온이 음극으로 이동하여 반응 $O_9 + 2H_9O + 4e^- \rightarrow 4OH^-$: 환원반응(전자를 얻는 반응)
- 3) 전해질 내 반응: 음극부에서 발생된 수산화이온(OH-)과 양극에서 발생된 금속이온(Fe2+)이 전해질 속에서 반응하여 부식생성물(Rust) 생성

$$Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2$$
: 수산화1철(황녹색)

3. 부식의 원인 "열가금용용유온P"

1) 내적요인

- (1) 열처리: 조직 균일시 내식성 향상
- (2) 가공: 표면 불균일 부위 부식이 용이
- (3) 금속의 조직: 다상, 돌기부, 응력 받는 부위 부식이 용이

2) 외적요인

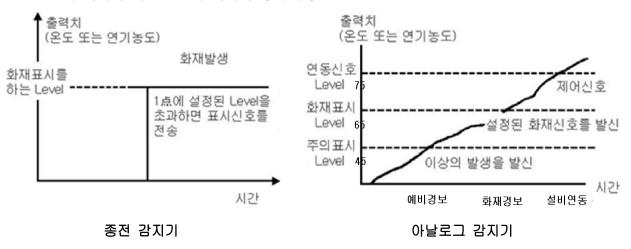
- (1) 용존산소량 ↑ → 부식 ↑
- (2) 용해 성분 ↑ → 가수분해 시 산성이 되는 염기류는 부식 ↑
- (3) 유속 ↑ → 부식 ↑
- (4) 온도 ↑ → 부식 ↑(80 [℃]까지 부식증가)
- (5) pH ↓ → 피막 용해. 부식 ↑

4. 부식 방지대책 "배유라부부설전"

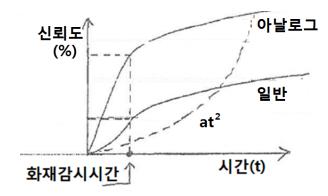
- 1) 배관재 선정: 동일관로에 동일재질 적용, 이종금속 전위차 고려. 합성수지관사용(CPVC)
- 2) 유속제어: 1.5 [m/s] 이하. 유속 축소 및 배관경 확대
- 3) 라이닝재(방부 피복): 내식재 코팅(피복두께 확보) PE, 타르에폭시
- 4) 부식억제제 사용: 규산, 인산계 방식제
- 5) 부식환경개선: 온도 ↓, 습기↓, 용존산소↓, PH조정
- 6) 설계 응용: 틈새, 요철, 굴곡 등 응력의 변화 최소화
- 7) 전기방식: 양극방식법, 음극방식법(유전양극, 외부전원 등)
- 8) 설계시 고려사항
 - (1) 매설 토양의 성분 및 저항률 등을 사전에 파악, 환경 영향에 따른 전위차 고려
 - (2) 보호 설비의 종류, 특징에 따라 부식방지 방법 산정
 - (3) 시공완료 후 정기적 전위차 측정 → 방식전류 조정 및 대책

3-4. 일반 감지기와 아날로그 감지기의 주요 특성을 비교하고, 경계구역 산정방법에 대하여 설명하시오.

답)


출처'이중희 소방기술사, 내진설계 해설서, 모아소방기술사 1권 P540

1. 개 요


- 1) 점차 고층화, 심층화, 다용도화 → 화재강도와 화재하중 ↑ → 인명, 재산적 피해 ↑
- 2) 경보설비의 높은 신뢰성, 정확성, 신속성 필요
- 3) 감지기의 경우 경계구역을 기존(일반) 감지기 600 [m²]에서 아날로그감지기 감지기 감지범위 (90 [m²] 등)로 변경 시 상기의 장점을 가질 수 있음
- 4) 층수별 설치 외 위험도를 평가하여 위험도가 높을수록 적용이 필요함

2. 일반감지기와 아날로그 감지기 비교

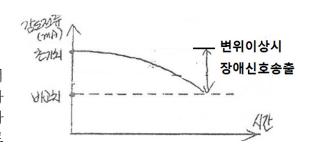
1) 일반감지기와 아날로그 감지기의 동작특성

- (1) 일반감지기: 일정온도(농도) 도달 시 동작(감지기가 판단)
- (2) 아날로그감지기: 온도(농도)에 따라 각기 다른 전류전압을 아날로그 수신기로 전송(수신기 가 판단)
- 2) 일반감지기와 아날로그 감지기의 신뢰도

3) 일반감지기와 아날로그 감지기비교 "동회식경비"

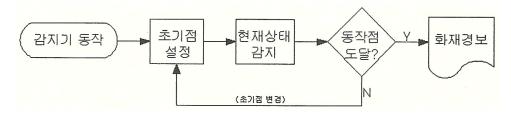
구분	일반형	아날로그	
종류	열, 연기, 불꽃	열, 연기	
동작특성	정해진 온도, 농도표시 → 접점 → 수신기 신호, 경보	온도, 농도 검지 → 아날로그신호 송출 → 수신기P/G → 단계적 경보발생	
 수신반	• 경계구역별 1회로	 감지기별 1회로 → 대용량 필요 	
회로수	● P형, R형	• R형(아날로그 기능)	
UZHH	• 600 [m²]당 1경계구역.	• 감지기당 1회로, 고유번호 부여.	
시공방법	● 동작감지기 알 수 없음	• 수신지역이 많다.	
경제성	저가	감지기, 수신반 고가	
비화재보	비화재보 발생률 높음	비화재보 확률 낮음	

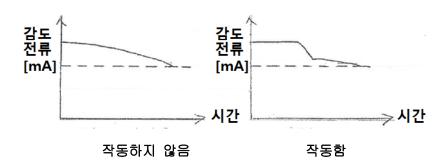
3. 아날로그 감지기 기능


- 1) 화재실내 온도, 연기농도를 다단계감지 및 출력 기능
- 2) 고유번지 기능: 감지기마다 경계구역 설정
- 3) 영(0)점 조정기능: 감지기의 오염여부 및 교체에 대한 신호발생

4) 자기진단기능

내장된 IC Chip의 P/G에 의해서 일정시간마다 감지전류를 샘플링 해서 연기가 없는 상태에 서의 감지전류를 측정하고 기록


- (1) 고장: 고장 신호
- (2) 탈락: 이상 경보 신호
- (3) 오염: 장애 신호


자기보상기능으로 감소해 가는 무연상태에서 의 감지전류를 초기치와 비교 → 비교치가 어느 한도(초기치 50 [%] 또는 30 [%])이하 → 감지기는 수신반에 장애신호의 하나로 오염표시신호를 송출

5) 자기 감도 보상기능

감지기의 오염과 성능저하 → 평상시 감지전류가 100 [mA] → 80 [mA]로 감소 → 80 [mA] × 80 [%] = 64 [mA]로 감소했을 때만 화재신호를 송출

4. 경계구역 산정방법

1) 동 및 충별 "225"

- (1) 하나의 경계구역이 2개 이상의 건축물에 미치지 않을 것
- (2) 하나의 경계구역이 2개 이상의 층에 미치지 않을 것예외) 500 [m²] 이하의 범위 안 2개의 층을 하나의 경계구역 가능

2) 수평적 경계구역 "6517"

- (1) 하나의 경계구역의 면적은 600 [m²] 이하로 하고, 한 변의 길이는 50 [m] 이하로 할 것. 예외) 당해 소방대상물의 주된 출입구에서 그 내부 전체가 보이는 것에 있어서는 한 변의 길이가 50 [m]의 범위 내에서 1,000 [m²] 이하로 가능.
- (2) 지하구의 경우 하나의 경계구역의 길이는 700 [m]이하로 할 것(도로 터널: 100 [m]이하)

구분	원칙	예외	
층별	층마다	2개 층을 하나의 경계구역으로 할 수 있는 경우: $500 [\text{m}^2]$ 이하 범위	
면적	600 [m²] 이하	$1,000 [\text{m}^2]$ 이하로 할 수 있는 경우(주 출입구에서 내부 전체가 보이는)	
		• 지하구, 터널 등: 700[m] 이하	
길이	50 [m] 이하	• 형식 승인(성능 인정) 받은 경우: 광전식분리형 - 100 [m] 마다	

3) 수직적 경계구역

- (1) 계단·경사로(에스컬레이터 경사로 포함)·엘리베이터 승강로(권상기실이 있는 경우 권상기실)·린넨슈트·파이프 피트 및 덕트: 별도의 경계구역으로 할 것
- (2) 계단, 경사로: 하나의 경계구역은 높이 45 [m] 이하
- (3) 지하 2층 이상의 계단·경사로: 별도의 경계구역으로 할 것 (지하층의 층수가 1일 경우 제외)

4) 외기 개방 시 면적산정기준

- (1) 대상: 외기에 대한 상시 개방부가 있는 차고·주차장·창고 등
- (2) 적용: 외기에 면하는 각 부분에서 5 [m] 미만은 경계구역 면적에서 제외

5) 아날로그 감지기 경계구역 산정

(1) 감지면적(바닥면적당 1개 이상) = 경계구역

3-5. 건축법상 방화구획과 내화구조의 기준을 비교하고, 차이점을 설명하시오.

답)

출처 '이중희 소방기술사, 모아소방기술사 P253, 260

1. 개 요

- 1) 화재 발생 시 인명과 재산의 보호를 위해 일정규모 이상 대상물에는 주요구조부를 내화구조, 방화구획을 설치한다.
- 2) 내화구조는 화재 시 건축물 강도의 유지의 의미이고, 방화구획은 화재를 일정공간에 가두는 개념이다.
- 3) 피난안정성과 내화성능을 위해서 두 개념의 기준을 이해하고, 적용 및 보완이 필요하다.

2. 방화구획 기준

- 1) 정의: 화재를 한정하기 위해 내화구조로 된 바닥, 벽 및 갑종방화문(자동방화셔터를 포함) 등으로 구획된 것
- 2) 방화구획 대상
 주요구조부가 내화구조 또는 불연재료 된 건축물로 연면적이 1,000 [m²]를 넘는 건축물
- 3) 방화구획 구획기준

구획종류	기준	구획방법
	● 10층 이하: 바닥면적 1,000 [m²]이내 마다	• 내화구조의 바닥, 벽
면적별 구획	• 11층 이상: 바닥 200 [m²]이내 마다(불연재: 500 [m²]이내)	● 갑종방화문
	• SP등 자동소화설비: 상기 면적 3배	● 자동방화셔터
층별 구획	• 3층 이상	배관 등
	 지하층 	● 풍도: 방화댐퍼,
용도별 주요구조부 내화구조 대상과 기타사이 부분 수직관통부 건축물 내를 수직으로 관통하는 부분은 다른부분과 구획		● 틈새: 인정받은 내화충전 재

구분	내용
구조	내화구조
갑종방화문	• 상시 닫힌 상태 유지
	● 연기, 온도, 불꽃 등을 신속하게 감지하여 자동으로 닫히는 구조
그人과 배저과 드 과트린트 겨오	• 내화충전성능 인정구조(한국산업규격, 한국건설기술연구원장)
급수관, 배전관 등 관통하는 경우	• 국토교통부고시 제2014-200호(내화구조의 인정 및 관리기준)
	● 철재로서 철판 두께 1.5 [mm]이상
프트기 바람그하으 코토리트 거요	• 연기 또는 온도상승에 따라 자동으로 닫히는 구조
풍도가 방화구획을 관통하는 경우	● 닫힌 경우 틈새가 생기지 않을 것
댐퍼설치기준(관통 또는 근접부분)	• 방화댐퍼 방연시험방법에 적합(한국산업규격)
	• 반도체공장 관통부 풍도 주위 - SP설치시 제외
건축물과 외벽과 바닥 사이틈새	내화충전법 적용

4) 방화문, 자동방화셔터 시험기준

(1) 방화문: 차염성, 차연성, 문세트 시험

(2) 방화셔터: 차염성, 차연성

3. 내화구조 기준

1) 정의: 화재에 견딜 수 있는 성능을 가진 구조

2) 주요구조부의 내화구조 대상 건축물

건축물의 용도	층수	당해용도의 바닥면적의 합계
3층 이상인 건축물 및 지하층이 있는 건축물		모든 건축물
문화 및 집회시설, 종교시설, 주점영업 및 장례식장	무조건	200 [m²] 이상
		(옥외관람석 1,000 [m²])
다중이용시설, 공동주택, 고시원, 의료시설, 오피스텔 등	2층	400 [m²] 이상
전시장, 판매시설, 운수시설, 자동차 관련시설 등	무조건	500 [m²] 이상
공장	무조건	2,000 [m²] 이상

3) 내화구조 요구조건

구분	주요내용	
가열온도	표준시간 온도곡선	
시험체 크기	실대 크기 벽 3 [m]× 3 [m], 보 4[m]	
바닥 3 [m]× 4 [m], 기둥 3 [m] 시험장치 수직/ 수평가열로/기둥용 가열로		
시험 종류	비재하 가열시험/ 재하가열시험/충격시험/주수시험	
시험시간	내화성능기준에서 정한 시간까지 30분, 1시간, 2시간, 3시간	
평가항목 구조안전성능/차염성능/차열성능		

4) 내화시험 성능요건

(1) 하중지지력

재하가열시험(단, 내화피복 된 시험체는 비재하가열시험)을 통하여 시험 중 시험체의 변형 량 및 변형률을 측정

- (2) 차염성
 - ① 한쪽면에 가열될 때, 화염•고온가스의 통과 또는 비가열면에서의 화염발생 방지하는 성능
 - ② 면 패드 착화되지 않을 것, 균열게이지 관통여부를 측정
- (3) 차열성
 - ① 구획부재 한쪽면을 가열할 때 비가열면의 온도상승을 규정이하로 제한성능
 - ② 평균온도 140 [K] 이내, 최고온도 180 [K] 이내

4. 방화구획과 내화구조의 비교

1) 요구 시험조건의 차이

(1) 내화구조: 차열성, 차염성, 구조부재의 구조안전성

(2) 방화구획: 차염성, 차연성

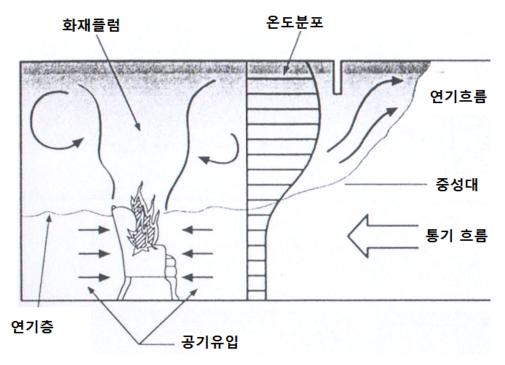
2) 내화성능의 차이

- (1) 내화구조: 건축물의 내화성능기준(30분~3시간) 적용
- (2) 방화구획(방화문, 방화셔터): 내화벽체의 성능기준과 비교해서 안전성이 낮은 기준 적용

3) 피난, 방화 성능 차이

- (1) 내화구조: 주요구조부의 내화성능 + 재사용
- (2) 방화구획: 바닥, 벽, 갑종방화문, 자동방화셔터, 관통부위의 화재 확대방지

3-6. 환기구가 있는 구획실의 화재 시, 연기 충진(Smoke Filling) 과정과 중성대 형성에 따른 화재실의 공기 및 연기흐름을 3단계로 구분하여 설명하시오.

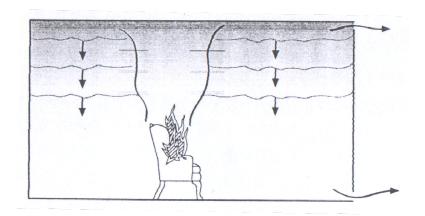

답)

출처 '이중희 소방기술사, 화재공학원론

1. 개 요

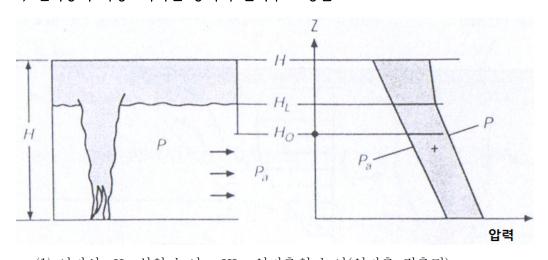
- 1) 구획실의 화재는 연기의 오염과 구획실 외부로의 화재확산 문제점을 가지고 있음
- 2) 연기와 공기의 유동은 주로 온도상승에 의한 부력의 영향 때문 화재발생 → 온도 ↑ → 밀도 ↓ → 부력 발생 → 압력차에 의한 속도 발생 → 연기유동
- 3) 연기의 유동(확대)은 피난안전성 저하(ASET 〈RSET)를 초래하므로 유동을 이해하여 이에 맞는 대책이 요구된다.

2. 연기층과 환기흐름

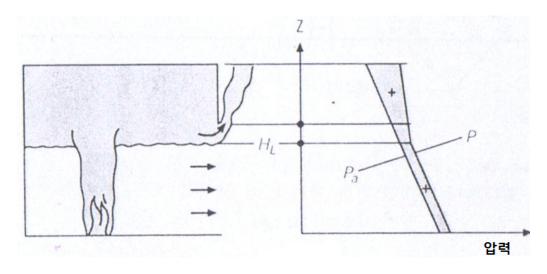


실내에서 화재에 의한 유동

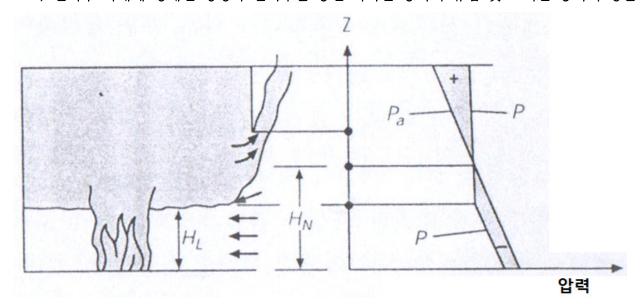
- 1) 문 또는 창문이 개방된 실내화재는 천장부터 연층이 형성되고 화기구 아래쪽에서 유출 시작
- 2) 공기는 환기구의 중성대 아래에서 유입, 중성대 상부에서 유출
- 3) 2개 층이 잘 혼합된 구획화재를 대략적으로 예상하는데 이용


3. 연기충진(Smoke Filling)

- 1) 구역이 밀폐 또는 환기구를 통해 연기가 방출되기 전 초기 단계에는 역학 관계는 충진에 의한 것이다.
- 2) 바닥과 천장에 누출이 있는 구획실은 유동은 아래와 같다.
- 3) 충진 되고 누출되는 동안 약간의 정압에 의해 실외로 유동이 발생


3. 구획실 연기 흐름의 구분(환기구가 있는 구획실)

1) 연기층의 하강: 차가운 공기의 환기구로 방출



- (1) 여기서, H: 실의 높이, HL: 연기층의 높이(연기층 접촉면)
 - Ho: 환기구 높이, HN: 중성대 높이
 - P: 연기(플럼)의 압력, Pa: 주변 압력
- (2) 압력분포: 플럼의 압력(P) 〉 주변압력(Pa) → 기류 배출
- (3) 연기 발생에 의해 천장은 서서히 채워짐

2) 뜨거운 공기의 환기구로 방출

- (1) 연기층의 접촉면 HL이 환기구 아래 끝으로 내려가면 환기구에서 흐름은 양방향이 됨
- (2) 그 후 실내로 유속은 실외로의 유속과 거의 같아짐
- (3) 압력분포: 플럼의 압력(P)와 주변압력(Pa)은 거의 같아짐 → 기류 배출
- 3) 환기구 아래에 경계면 형성과 환기구를 통한 차가운 공기의 유입 및 뜨거운 공기의 방출

- (1) 중성대에 의해 중성대 하부의 압력분포는플럼의 압력(P) 〈 주변압력(Pa) → 기류 유입
- (2) 중성대 높이는 구획실 화염이 충만 하는 정도에 따라 대략 Ho/2 ~ Ho/3으로 변함
- (3) 연기층은 바닥에 거의 가깝게 내려옴

제 4교시 문제풀이

4-1. A급, B급, C급 화재에 각각 소화능력을 가지는 수계소화설비와 소화특성에 대해 설명하시오.

답) 출처' 각종자료

1. 개 요

- 1) 스프링클러 소화설비의 물방울은 중력에 의한 자유낙하로 화원에 물방울을 침투시키며, 물분 무, 미분무 소화설비는 노즐의 방사 압력으로 작은 물입자를 분사하는 방식이다.
- 2) 물입자의 크기 및 분포에 따라 소화특성에 차이가 있고 일반, 유류, 전기화재에 대한 적응성이 달라지므로 설비별 메커니즘 이해가 중요하다.
- 3) 수계소화설비의 종류는 다양하므로 여기에서는 스프링클러설비, 물분무 소화설비, 미분무 소화설비를 중점적으로 설명하기로 한다.

2. 화재의 종류별 적용 수계소화설비

구분		정의	적용 수계소화설비
			스프링클러설비
A급화재	일반화재	나무, 섬유, 종이, 고무, 플라스틱류와 같은 일반 가연물이 타고 나서 재가 남는 화재	물분무소화설비
AU为A			미분무소화설비
			포소화설비
	유류화재	인화성 액체, 가연성 액체, 석유 그리스, 타르, 오일, 화재 유성도료, 솔벤트, 래커, 알코올 및 인화성 가스와 같은 유류가 타고 나서 재가 남지 않는 화재	물분무소화설비
B급화재			미분무소화설비
			포소화설비
○ 7 = +	전기화재	기화재 전류가 흐르고 있는 전기기기, 배선과 관련된 화재	물분무소화설비
C급화재 			미분무소화설비

3. 스프링클러 소화설비의 특성

- 1) 물의 온도상승에 의한 비열과 기화 시 발생되는 기화열에 의한 열흡수를 이용한 냉각작용의 원리를 이용한다.
- 2) 봉수상태의 주수보다는 물방울 형태의 주수 시에 쉽게 기화하여 소화 효가가 크다.
- 3) 폐쇄형 스프링클러헤드의 RTI가 작을 시 RDD는 감소하고 ADD는 증가한다.
- 4) K값에 따라 표준형, Large Drop형, ELO, ESFR 등으로 분류한다.

4. 물분무 소화설비의 특성

- 1) 물이 유속을 가지고 분사하므로 운동량을 가진 물방울이 가연물의 표면을 타격한다.
- 2) 소화원리는 질식소화, 냉각소화, 유화작용이다.
- 3) 냉각효과는 스프링클러에 비해 작으나 질식소화는 크다.
- 4) 스프링클러에 비해 수손피해가 작다.

5. 미분무 소화설비의 특성

- 1) 미분무 소화설비는 스프링클러설비와 할로겐화합물소화설비를 대체하기 위해 개발됨
- 2) 스프링클러설비에 비해 단위 시간당 방수량이 상당히 작으므로 수손의 우려가 작음
- 3) 소화설비작동의 방법이 다양하며 물입자의 크기에 따라 전기화재(C급 화재)에도 적용이 가능
- 4) 물입자의 크기 및 분포에 따라 Class 1, Class 2, Class 3 로 분류한다.

6. 소화특성 비교

항 목	스프링클러 설비	물분무설비	미분무 설비	
헤드구성	감열체, 오리피스, 디플렉터	오리피스(디플렉터 없음)	오리피스(디플렉터 없음)	
물방울 크기	큼(1~2 [mm])	작음(0.2~0.8 [mm])	매우 작음(Dv 0.99 ≤ 400μm)	
Mechanism	물과 디플렉터 충돌 → 속도 감소 → 자중낙하	물이 유속을 가지고 분사 → 운동량을 가진 작은 물방울 → <mark>물표면</mark> 타격	물이 유속을 가지고 분사 → 운동 량을 가진 매우 작은 물방울 → 주위로 비산	
운동량(유속)	없음(F=mg)	있음(F=mv)	작음(F=mv)	
방 사 압 력	1 \sim 12 [kgf/ cm^2]	3.5 [MPa]	저압식: 1,2[MPa]이하 중압식: 1,2~3,5[MPa]이하 고압식: 3,5[MPa]초과	
화심속 침투	직접 침투	일부 침투	거의 없음	
소화원리	냉각소화, 질식소화	질식소화, 냉각소화 유화작용(Emulsification)	질식소화, 냉각소화 복사열차단효과	
소화효과 비교	냉각소화: 스프링클러 〉물분무 〉미분무 질식소화: 스프링클러〈 물분무〈 미분무 유화효과: 물분무에만 있음			
방호개념	실내화재의 구역방호	방호구역내 설치된 장치류에 대한 방호	작게 구분된 소구역	
헤드위치	천장, 반자	천장, 반자, 측면, 아래	천장, 반자	
적 용 장 소	일반 건축물	특수가연물 저장, 취급 절연유 봉입변압기 케이블트레이, 케이블덕트 차고, 주차장 등	선박, 지하구, 전산실 등	
적 용 화 재	A급화재	A, B, C급 화재	A, B, C, K급 화재	
장 점	시공이 쉽고 비용 작다 넓은 지역 방호 가능	수손피해 작음 A, B, C급 화재에 적응성	수손피해 작음 A, B, C, K급 화재에 적응성 폭발억제 설비로 사용가능	
단 점	B, C급 화재에 적응성 없음 수손피해 우려	부력을 이기고 화심으로 침투하는 비율작음 배수설비 설치 열기류, 바람의 영향이 큼	표준이 없어 실제시험 필요 고가, 고압펌프 필요 초기화재진압 실패시 화재확대 열기류, 바람의 영향이 큼	

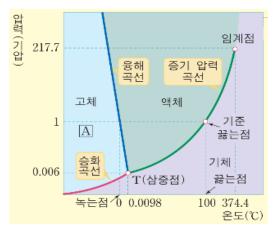
7. 결 론

- 1) 스프링클러설비는 전기화재에 비적응 및 물 피해가 가중되며, 물분무 및 미분무수는 소화수량 이 적고 물 피해가 작다.
- 2) 미분무 소화설비는 선박용 스프링클러의 대체설비로 비교적 잘 개발되었고, 공동구 화재에 최적의 소화시스템이다.
- 3) 미분무 소화설비는 고압의 수류에도 마모·변형되지 않는 노즐의 개발이 필요하며 소화성능의 변수를 설계할 객관적인 이론 및 근거자료의 정립이 필요하다.

4-2. 수계소화설비에 사용되는 물의 특성을 열역학적 선도(Thermodynamic Diagram)에서 삼중점(Triple Point)과 삼중선(Triple Line)으로 구분하여 설명하시오.

답) 출처 '각종자료

1. 개 요

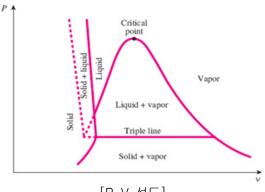

- 1) 물질의 상태도에서는 압력(P), 온도(T), 비체적(V) 3가지의 요소로 구성되며 유체의 열역 학적 과정을 표현하기 위해 작성된 도표이다.
- 2) 3가지의 요소를 연산하자면 스칼라연산으로는 계산되지 못하며, 벡터연산으로만 가능하므로 복잡하다.

2. 적용법칙

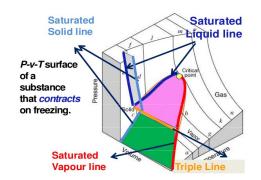
- 1) 보일의 법칙
 - (1) 온도가 일정한 가정에서 압력과 비체적의 관계를 이용하여 계산
 - (2) PV = Constant
- 2) 샤를의 법칙
 - (1) 압력이 일정한 가정에서 온도와 비체적의 관계를 이용하여 계산
 - (2) $\frac{V}{T}$ = Constant

3. 삼중점 (Triple Point)

- 1) 물질의 상태가 특정한 압력, 온도에서 고체상, 액체상, 기체상의 3상이 모두 평형을 이루어 공존 하는 상태이다.
- 2) 물의 삼중점에서의 온도 및 압력은 0.0098[[℃]], 0.006atm이며 삼중점에서는 얼음, 물, 수증기 가 공존한다
- 3) 따라서 PVT 3차원을 P-T 2차원으로 해석하면 임 계점(Critical Point)과 삼중점(Triple Point)으로 표현한다.


[P-T 선도]

4. 삼중선 (Triple Line)


- 1) T-V Diagram에서 고체, 액체, 기체의 세 상이 평형을 이루며 존재하는 상태
- 2) 따라서 PVT 3차원을 P-V관계를 2차원으로 해석 하면 임계점(Critical Point)과 삼중선 (Triple Line)으로 표현된다.

5. PVT Diagram의 구성

- 1) 포화액체선 (saturated liquid line)
- 2) 포화증기선 (saturated vapor line)
- 3) 포화고체선 (saturated solid line)
- 4) 삼중선 (Triple Line)

[P-V 선도]

4-3. 건축물이 대형화·고충화·심충화 되면서 주차장 역시 지하화 되고 있다. 주차장에서 화재 발생 시 문제점과 화재 안전성 확보를 위한 대책을 설명하시오.

답) 출처 '유쾌한의 소방기술사

1. 개요

- 1) 현대에는 도시의 고밀도화로 지하주차장의 대형화, 고층화, 심층화 되고 있는 추세이며 모든 아파트의 주차장 역시 지하화 되고 있다.
- 2) 지하주차장 화재는 발화한 차량만의 피해로 국한하지 않고 최근에는 모든 차량이 전소하는 양 상을 보이며 차량화재의 특성 및 피해양상의 변화는 Global적 과제로 대두되고 있다
- 3) 최근 5년간 발생한 화재 중 지하층에서 발생한 화재는 전체 화재발생 건수의 4 [%] 정도이나, 인명피해 비율은 7 [%]로 일반화재에 비해 높은 비율을 나타낸다.('11년 ~ '15년 평균)
- 4) 또한 최근의 차량은 연비경쟁으로 인해 경량화 되었으나 사용 재료인 플라스틱의 열방출률 증가로 화재하중이 증가하고 있다. 이에 따라 설계기준도 강화되어야 하나 국내 스프링클러 설비의 화재안전기준은 제정된 이후 거의 변화가 없어 개정이 필요하다.

2. 지하주차장 화재의 특성

1) 차량의 설계

- (1) 연비 향상의 요구로 차량무게는 감소하고 화재하중 증가
 - ① 엔진을 효율화하고 차량의 무게를 줄이는 차량 설계 발전
 - ② 철 대신 알루미늄이나 플라스틱을 사용해 차량의 무게를 감소
 - ② 심지어 연료탱크마저 플라스틱으로 교체
- (2) 차량 간의 거리, 공간 조건 등에 따라서는 다른 차량으로 연소 우려
- (3) 엔진룸 등 자동차 내부에서 연소하는 경우 소화약제 등이 연소실로 유효하게 방사되기 어렵기 때문에 초기소화가 곤란

2) 주차장의 대형화·심층화·고층화·다양화

- (1) 지하주차장은 더욱 깊어졌고 대부분 아파트의 주차장이 지하화
- (2) 무창층, 폐쇄공간으로 환기불량으로 축적이 가속되어 화재온도 상승
- (3) 공기공급 부족으로 불완전연소로 다량의 유독가스 발생
- (4) 대규모 공간이거나 슬로프 등으로 외기에 접할 경우 공기량이 충분하므로 장시간 연소
- (5) 기존의 스프링클러로는 초기화재진압에 실패 초래

3) 연기특성

- (1) 연기배출이 곤란하여 농연 축적으로 가시거리 저하
- (2) CO 등 많은 유독가스 발생
- (3) 부속하는 시설로 연기가 확산될 우려

4) 소방대 진입곤란

- (1) 소방대 진입로가 피난경로와 같아 소화활동 지연
- (2) 피난방향과 연기유동방향이 동일

(3) 차량에서 발생하는 다량의 연기 때문에 초기소화, 피난 및 소방 활동이 곤란

3. 주차장 소방시설의 문제점 및 대책

구 분	문제점	대책
스프링클러	 준비작동식으로 작동시간 지연 건식설비로 작동시간 지연 및 2차배관의 공기배출로 화재확대 우려 살수밀도 부족 	• 동결우려 없는 곳은 신속히 동작하는 습식 스프링클러설비 검토 • 살수밀도 상향조정(헤드배치거리)
화재감지기	감지기가 교차회로로 동작시간 늦다차동식감지기를 주로 사용하여 동작이 늦다	• 특수감지기 설치
제연설비	• 유인휀의 내열성 부족 • 유인휀의 화재연동 안됨	• 유인휀의 내열성 의무화 • 화재와 연동하여 자동 작동

4. 관련 고찰

1) 국내의 지하주차장 살수밀도

- (1) 스프링클러 화재안전기준에 따라 표준형 헤드를 수평거리 2.3 [m]
- (2) 살수밀도를 7.6으로 정하고 있다.

2) NFPA 13 기준

- (1) 자동차 주차장과 전시실의 살수밀도를 중급위험 그룹1. 최대 살수밀도는 6.1로 제시
- (2) 이는 주차된 자동차에 가솔린이 들어 있으나 차량 한 대의 화재로 스프링클러로 제어가 가능하다는 것을 전제함
- (3) 하지만 화재하중이 늘어난 차량에 대해서는 Full-Scale Sprinkler Test한 결과 인접 차량 으로의 화재전파 차단을 위한 살수밀도를 14.4 ~ 22로 규정한다.
- (4) 이는 NFPA에서 제시하는 살수밀도 중 최고 수준이라 할 수 있다.

5. 개선방향

- 1) 지하주차장은 축열 효과가 있는 장소로 밀폐되어 플래시오버와 백드래프트가 발생할 가능성이 크며 불완전 연소로 인한 독성 가스와 연기로 인해 피난 및 소화활동에 장애를 준다. 따라서 Active System을 강화할 필요가 있으며 수동식 보다는 자동식인 수계나 가스계 시스템을 적용하는 것이 바람직할 것이다.
- 2) 지하주차장에서 화재가 발생하면 피해가 크므로 성능위주 방화설계를 통한 피난과 방화의 관점에서 화재 메커니즘을 제어할 필요가 있다.
- 3) 차량화재 시험 시 폭발 등의 이유로 연료를 제거하고 시험하고 있으나 실제 화재는 연료가 큰 영향을 미치므로 해외 사례를 참조하여 연료를 주입하고 차량 화재시험의 수행이 필요하다.
- 4) 국내에서도 충분한 데이터 확보 및 설계기준 정립을 통해 지하주차장 화재 방호를 강화하여야 하겠다.

출처 '유쾌한의 소방기술사

4-4. 아래 조건과 같은 특정소방대상물의 비상전원 용량산정 방법과 제연설비의 송풍기 수동조 작스위치를 송풍기별로 설치하여야 하는 이유에 대하여 설명하시오.¹⁾

[조건]

- 1. 5개의 특정소방대상물이 지하에 설치된 주차장으로 연결되어 있다.
- 2. 주차장에서 하나의 특정소방대상물의 제연구역으로 들어가는 입구에는 제연용 연기감지기가 설치되어 있다.
- 3. 제연용 연기감지기의 작동에 따라 특정소방대상물의 해당 수직풍도에 연결된 송풍기와 댐퍼가 작동한다.

답)

1. 개 요

- 1) 제연용 송풍기는 화재 시 급기와 배기를 통해 연기를 제어하는 것으로 비상전원에 의해 일정 시간 동작이 보장되어야 하고 자동 및 수동조작에 의하여 동작되어야한다.
- 2) 지하주차장으로 연결된 특정소방대상물은 입구에 설치된 제연용 감지기가 작동되는 곳만 송풍기와 댐퍼가 작동되도록 규정되어 있다.
- 3) 비상전원은 용량산정 시에는 특정소방대상물이 지하로 연결되어 있을 경우 해당 지역 감지 기가 작동되는 곳이 일정치 않으므로 전체 송풍기의 전력용량을 합산하거나 여러 특정대상물 중 가장 큰 제연용 송풍기의 용량으로 산정해야 한다.
- 4) 송풍기 수동조작스위치는 송풍기의 수동기동과, 제어반에서 발신 장소를 확인을 할 수 있도록 송풍기 별로 설치하여야 하며, 모든 송풍기가 동시 동작할 경우 과부하나 전압강하 등에 의한 기동실패의 우려가 있으므로 송풍기 별로 설치하여 화재가 난 제연구역만 작동할 수 있도록 해야 한다.

2. 제연설비 대상 (화재예방, 소방시설 설치·유지 및 안전관리에 관한 법률 시행령 별표5)

	특정소방대상물	기준
	무취지하니서 조그리서 오토니서	무대부 바닥면적 200[m²] 이상
	문화집회시설, 종교시설, 운동시설	영화상영관 수용인원 100명 이상
	판매시설, 근린생활시설, 위락시설	
지하층	숙박시설, 운수시설, 창고시설 중 물류터미널	바닥면적 1,000 [m²] 이상
무창층	시외버스정류장, 철도 및 도시철도시설	ULTH 74 1 000 [m ²] 01 A b
	공항시설 및 항만시설의 대합실 또는 휴게시설	바닥면적 1,000 [m²] 이상
	지하가	연면적 1,000 [m²] 이상
	EJ 14	안전행정부령으로 정하는
터 널 		위험등급 이상
특별피난계단, 비상용 승강기 승강장		-

¹⁾ 작성: 곽영남, 방현정 기술사

3. 특별피난계단의 계단실 및 부속실 제연설비의 화재안전기준 (NFSC 501A)

1) 제17조(급기구)

- (1) 옥내에 설치된 화재감지기에 따라 모든 제연구역의 댐퍼가 개방되도록 할 것
- (2) 다만, 둘 이상의 특정소방대상물이 지하에 설치된 주차장으로 연결되어 있는 경우에는 주 차장에서 하나의 특정소방대상물의 제연구역으로 들어가는 입구에 설치된 제연용 연기감 지기의 작동에 따라 특정소방대상물의 해당 수직풍도에 연결된 모든 제연구역의 댐퍼가 개 방되도록 할 것〈개정 2013.9.3.〉

2) 제22조(수동기동장치)

- (1) 배출댐퍼 및 개폐기의 직근과 제연구역에는 다음 각 호의 기준에 따른 장치의 작동을 위하여 전용의 수동기동장치를 설치
 - ① 전층의 제연구역에 설치된 급기댐퍼의 개방
 - ② 당해 층의 배출댐퍼 또는 개폐기의 개방
 - ③ 급기송풍기 및 유입공기의 배출용 송풍기(설치한 경우에 한한다)의 작동
 - ④ 개방·고정된 모든 출입문(제연구역과 옥내사이의 출입문에 한한다)의 개폐장치의 작동
- (2) 옥내에 설치된 수동발신기의 조작에 따라서도 작동

3) 제24조(비상전원) 자가발전설비, 축전지설비 또는 전기저장장치 설치

- (1) 점검에 편리하고 화재 및 침수 등의 재해로 인한 피해를 받을 우려가 없는 곳에 설치
- (2) <u>제연설비를 유효하게 20분(층수가 30층 이상 49층 이하는 40분, 50층 이상은 60분) 이상</u> 작동
- (3) 상용전원으로부터 전력의 공급이 중단된 때에는 자동으로 비상전원으로부터 전력을 공급 받을 수 있도록 할 것
- (4) 비상전원의 설치장소는 다른 장소와 방화구획 할 것
- (5) 비상전원을 실내에 설치하는 때에는 그 실내에 비상조명등을 설치

4. 비상전원 용량산정

1) 용량산정 방법

- (1) 방법1: 지하주차장에 연결된 모든 제연송풍기의 부하를 합산하여 산정
 - ① 하나의 주차장으로 연결된 둘이상의 특정소방대상물의 경우 어느 곳에 연기가 확산될지 특정할 수 없으므로 제연송풍기의 용량을 합산하여 산정
 - ② 소방부하의 경우 수용률을 100 [%]로 적용해야 함
 - ③ 장단점

장 점	단 점
• 화재가 지하주차장에서 둘이상의 특정소방	• 비상전원의 용량이 커짐
대상물로 화재가 확대되어도 제연이 가능	• 많은 비용이 소요됨
• 과부하에도 대처 가능	 , 역드 미 <mark>우</mark> 시 고 파무

- (2) 방법2: 한 개의 특정소방대상물을 기준으로 가장 큰 제연송풍기를 기준으로 산정
 - ① 모든 화재는 큰 건물이라도 한 곳에서만 화재가 난다는 이론(Single Fire Theorem)에 의거하여 한 개의 특정소방대상물을 기준으로 가장 큰 제연송풍기를 기준으로 비상전원 산정
 - ② 소방관서에서는 가장 큰 제연송풍기를 기준으로 용량을 산정하라고 지도하고 있지만 명확한 기준은 없는 실정이므로 설계자의 의도에 따라 이루어지고 있는 실정임
 - ③ 장단점

장 점	단 점
 가장 큰 제연송풍기만을 기준으로 용량을 산정하므로 비상전원의 용량이 작아도 됨 비용 적게 소요 	 화재가 둘 이상의 특정소방대상물로 확대시 대처 안됨 화재확대 시 과부하로 인해 비상전원 용량부족

2) 용량산정 절차

(1) 비상전원의 종류 결정 자가발전설비, 축전지설비(내연기관의 기동 및 제어용 축전지), 전기저장장치

(2) 자가발전설비의 용도별 기종 구분 및 특징(NFSC-103, 제12조제3항제8호)

구분	정격출력용량 산정 대상부하	특 징
소방전용		• 소방전용
	소방부하	• 비상전용발전기는 별도 설치
발전기		• 건축 면적 증대로 고비용
ᆺᄔᅜᅴᄀᅺᄋ		• 소방 및 비상 겸용으로 고용량, 고비용
소방부하겸용	소방부하, 비상부하 합산	• 화재안전기준 개정 시점과 무관하게
발전기		법적으로 허용되는 전통 기종
		• 소방 및 비상 겸용으로 저용량, 저비용
소방전원보존형	소방부하(단, 비상부하가 소방부하 보다 클 시 비상부하 기준으로 산정)	• 제어장치 설치로 기존의 비상발전기에도
발전기		적용 가능한 신규기종
		• 설치비, 운영비 절감

(3) 비상전원 용량산정

① 층수 30층 미만: 20분 이상

② 층수 30층 이상 49층 이하: 40분 이상

③ 층수 50층 이상: 60분 이상

5. 제연설비의 송풍기 수동조작스위치를 송풍기별로 설치하여야 하는 이유

1) 설치목적

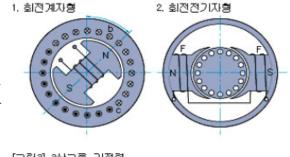
- (1) Fail safe 개념 적용
- (2) 화재감지기에 의해 제연설비가 작동되나, 시스템상의 오류로 인해 제연설비가 미작동 될 경우에 대비하여 수동기동장치를 설치함

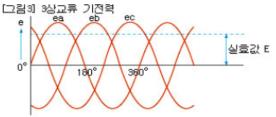
2) 송풍기별로 설치하는 이유

- (1) 화재가 발생한 지역의 특정소방대상물에 대해서만 제연을 하여 효과적인 시스템 운영을 위함
- (2) 지하층의 연기확산에 따라 다소 위험성은 내재하고는 있지만 화재가 확산되지 않은 장소까지 예측하여 제연설비를 제어하기에는 복잡한 시스템 구성으로 제연설비의 신뢰성에 불확실성이 크고, 많은 비용이 발생하고 유지관리에 문제점이 많음

6. 결 론

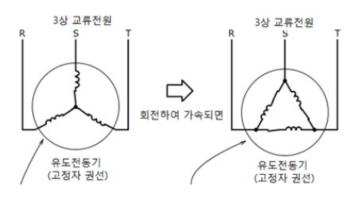
- 1) 여러 개의 특정소방대상물이 하나의 지하주차장으로 연결되었을 경우 비상전원 용량산정 시전체 부하를 합산하여 선정하는 방법과 한 개의 특정소방대상물을 기준으로 가장 큰 제연송풍기를 기준으로 산정하는 방법이 있지만 제연설비 송풍기 동작의 신뢰성 확보를 무엇보다 우선순위에 두어야 하며 규정화된 비상전원의 산정방법이 없으므로 기준의 정립이 필요하다.
- 2) 수동조작스위치는 급기와 배기 댐퍼가 개방되는 위치를 확인하고, 재실자의 피난 시 혼란을 방지하기 위하여 화재 발생장소의 송풍기만 동작 되도록 별도로 설치하여 한다.


4-5. Y(Star)로 결선된 농형 유도전동기의 선간전압(Line Voltage)이 상전압(Phase Voltage)에 $\sqrt{3}$ 배가 됨을 극좌표형식으로 증명하시오.


답)

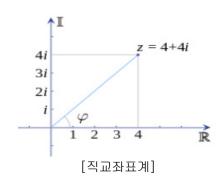
출처' 각종자료

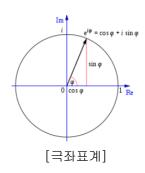
1. 삼상전압의 생성과정 (교류발전기의 원리)


- 1) 삼상이란 발전기에서 전기를 생산할 때 발전기의 구조에 의해 생산됨
- 2) 발전기의 구조를 보면 360° 원형으로 된 고정자 철 심에 삼상 즉 R상, S상, T상이라고 하는 3개의 코 일을 120° 위치에 배치를 하고 발전기 회전자 자석 N-S극을 회전시키면 3상의 전기가 생산됨
- 3) 발전기 회전자 자석 N-S극이 1회 회전 시 3개의 코일에는 120°의 위상차가 생기는 1 [Hz]의 전기가 발생함

2. 3상 농형 유도전동기 기동

- 1) 기동시 고정자 권선을 Y(Star)결선으로 시동하면 기동전류가 1/3, 기동 토오크 1/3로 줄어듦
- 2) 전동기가 회전되어 가속되면 고정자 권선을 $\Delta(Delta)$ 결선으로 바꿈

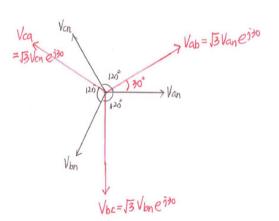



3. 선간전압(Line Voltage)은 상전압(Phase Voltage)의 √3배의 증명

1) 극좌표계

- (1) 모든 복소수는 복소평면 위의 점으로 표현될 수 있으며, 직교 좌표계와 극좌표계의 방식으로 표현됨
- (2) 극좌표계란 평면위의 위치를 각도와 거리를 써서 나타내는 2차원 좌표계

구분	직교좌표계	극좌표계	
프현 표현	z=x+iy , i : 허수단위	$z=r(\cos\theta+i\sin\theta)=re^{i\theta}=r \angle \theta$ $r=\sqrt{x^2+y^2}$ $\cos\theta=x/r\;,\;\sin\theta=y/r$ e : 자연로그의 밑	



2) 선간전압 = $\sqrt{3}$ × 상전압의 증명

- (1) 평형삼상전압의 조건
 - ① 전압의 크기는 같다.
 - ② 각상 전압의 위상차는 120°이다.
- (2) 증명
 - ① 상전압을 각각 $V_{an}=Ve^{j\theta}$, $V_{bn}=Ve^{j(\theta-120)}$, $V_{cn}=Ve^{j(\theta+120)}$ 이라고 놓으면
 - ② 선간전압

$$\begin{split} V_{ab} &= V_{an} + V_{nb} = V_{an} - V_{bn} \\ &= Ve^{j\theta} - Ve^{j(\theta - 120)} = V(e^{j\theta} - e^{j(\theta - 120)}) \\ &= V(e^{j\theta} - e^{j\theta}e^{-j120}) = Ve^{j\theta}(1 - e^{-j120}) \\ &= V_{an}(1 - (\cos(-120) + j\sin(-120))) \\ &= V_{an}(1 + \frac{1}{2} + j\frac{\sqrt{3}}{2}) = V_{an}(\frac{3}{2} + j\frac{\sqrt{3}}{2}) \\ &= \sqrt{3} V_{an}(\frac{\sqrt{3}}{2} + j\frac{1}{2}) \\ &= \sqrt{3} V_{an}e^{j30} \end{split}$$

③ ②와 같이 V_{bc} , V_{ca} 를 증명하면

$$V_{bc} = \sqrt{3} \ V_{bn} e^{j30} \quad V_{ca} = \sqrt{3} \ V_{cn} e^{j30}$$

 \therefore 선간전압(Line Voltage)이 상전압(Phase Voltage)의 $\sqrt{3}$ 배이다.

4. 소방에서의 적용

- 1) 선간전압: 소화펌프, 제연용 팬 등
- 2) 상전압: 비상콘센트, 집합형 중계반, 비상방송설비, 유도등, 수신기 등

4-6. 제연용 송풍기에 가변풍량 제어가 필요한 이유를 설명하시오. 또한 댐퍼제어 방식과 회전 수제어 방식의 특징을 성능곡선으로 비교하고, 각 방식의 장·단점 및 적용대상에 대하여 설명하시오.

답)

출처'모아소방기술사 1권 P381

1. 개요

- 1) 제연설비를 크게 분류하면 거실제연과 부속실 제연으로 분류할 수 있으며, 청결층 확보와 차압, 방연풍속을 유지하여 인명손실을 최소화하는 것을 목적으로 한다.
- 2) 연기의 흐름에는 굴뚝효과, 바람효과, 부력, 공기팽창력이 영향을 미치므로 영향인자를 고려하여 송풍기의 풍량을 제어할 필요가 있으며, 송풍기 흡입측이나 토출측에 댐퍼를 설치하여 급기량을 조절하거나 급기구에 댐퍼를 조절하여 차압 및 방연풍속을 조절하고 있다.
- 3) 최근 송풍기 제어 방법 중 차압을 센싱하여 전동기의 회전수를 제어하는 방법이 많은 관심을 받고 있다.

2. 제연용 송풍기에 가변풍량 제어가 필요한 이유

1) 거실제연

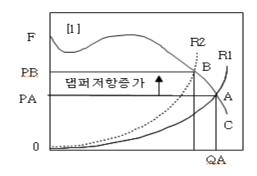
- (1) 제연구역 내 과압 방지를 통한 청결층 확보
- (2) 청결층 확보를 위해서는 NFSC에서 규정한 배출량 및 급기량을 유지해야 함

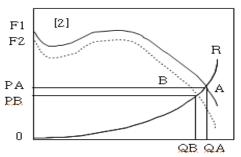
2) 부속실제연

- (1) 제연구역내 차압 및 방연풍속 유지를 통한 피난로 확보
- (2) 연기의 유동에 영향을 미치는 굴뚝효과, 바람효과 등으로 인해 차압 및 방연풍속의 유지가 어려우므로 가변풍량 제어가 필요

3) 터널제연

(1) 터널 내 임계풍속 유지를 통한 역기류 방지

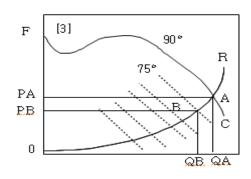

3. 댐퍼제어방식에 따른 송풍기 압력변화

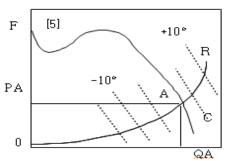

1) 토출댐퍼에 의한 제어(저항곡선 변화)

- (1) 송풍기 토출측 덕트 내부에 설치된 댐퍼로 조절
- (2) 댐퍼를 닫으면, O-R₂로 변화,운전상태점은 A → B 이동
- (3) 송풍량 QA → QB로 감소,전압 PA → PB로 증가

2) 흡입댐퍼에 의한 제어(성능곡선 변화)

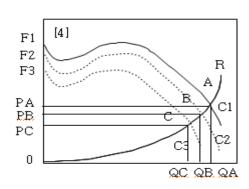
- (1) 흡입구에 댐퍼 설치로 풍량제어
- (2) 흡입댐퍼를 닫으면
 운전상태점은 B점이되며,
 풍량 QA → QB로 감소, 전압 PA → PB로 감소

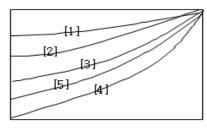



3) 흡입 Vane에 의한 제어

- (1) 흡입구에 Vane 설치, Vane의 기울기 조절로 풍량제어
- (2) Vane을 조금씩 닫으면 압력특성 곡선이 점차 낮아져 운전상태점은 A, B, C로 변화
- (3) 풍량 QA → QB로 감소시, 정압 PA → PB로 감소

4) 가변피지 제어(성능곡선 변화)


- (1) 축류 송풍기에 부착된 날개의 각도를 변화시켜 풍량제어
- (2) 피치각도조절로 운전상태점 변화, 송풍량 감소, 송풍기 전압 변화


4. 회전수제어방식에 따른 송풍기 압력변화

- 1) 인버터제어, VVVF 제어 방식
- 2) 송풍기 회전수를 변화시켜 풍량을 제어 회전수를 n1 → n2 → n3로 감소시키면, 특성곡선은 (F1-C1) → (F2-C2) → (F3-C3)로 변화하며, 운전상태점 A → B → C로 변화
- 3) 송풍량은 QA \rightarrow QB \rightarrow QC 로 감소되고, 전압도 PA \rightarrow PB \rightarrow PC로 낮아진다.

5. 각방식의 비교

송풍기입력(%) 대비 송풍기 풍량변화율(%) (고성능 회전수제어 → 가변피치 → 흡입베인제어 → 흡입댐퍼 제어 → 토출댐퍼제어(저성능) 순으로 성능비교가 됨

입력(%)

풍량변화(%)

모아소방학원&에듀파이어학원 제114회 소방기술사 필기 문제풀이

6. 송풍기 풍량제어 비교

구분	토출댐퍼 제어	흡입댐퍼 제어	흡입 Vane 제어	회전수 제어	가변피치 제어
개념	송풍기 토출측 덕트 내부에 설 치된 댐퍼로 조절	흡입구에 댐퍼를 설치하여 풍량제어	흡입구에 Vane을 설치하여, Vane의 기울기로 풍량제어	송풍기의 회전수를 변화시켜 풍량제어	축류 송풍기에 부착된 날개의 각도를 변화시켜 풍량제어
적용	다익형 송풍기 소형 송풍기에 적용		Limit Load, Turbo Fan에 적용	승강로 가압방식 에너지 절감을 위한 공기조화 설비	
장점	초기 투자비 저렴 소형설비에 적당	초기 투자비 저렴 설치 간단	회전수 제어보다 경제적이며 초기투자비 적다운전비 감소, 동력 절약	모든 전동기에 적용 에너지효율좋고, 소용량에서 대용량까지 적용범위 넓다 자동운전 가능	● 에너지절약 우수, 효율(ŋ) 높다 나 ● 설치비 저렴, 회전수 제어보다 제어방식 간단
단점	● 서징 가능성이 있음. ● 효율 나쁘고, 소음 발생 ● 정압 높아져 차압확보 어려움	• 과도한 제어 시 과부하(over Load) 우려 • Surging 영역이 토출 댐퍼식에 비해 넓다	• Vane의 정밀성 필요	• 설비비가 비싸다. • 전자 Noise 장애 발생	● 기계식보다 공기식 제어방식 ● 축류에만 적용 ● 구조가 복잡